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Abstract 

The relaxed Hilberg conjecture states that the mutual information between two adjacent blocks of 

text in natural language grows as a power of the block length. The present paper reviews recent 

results concerning this conjecture. First, the relaxed Hilberg conjecture occurs when the texts 

repeatedly describe a random reality and Herdan’s law for facts repeatedly described in the texts is 

obeyed. Second, the relaxed Hilberg conjecture implies Herdan’s law for set phrases, which can be 

associated with the better known Herdan law for words. Third, the relaxed Hilberg conjecture is 

positively tested, using the Lempel-Ziv universal code, on a selection of texts in English, German, 

and French. Hence the relaxed Hilberg conjecture seems to be a likely and important hypothesis 

concerning natural language. 

Keywords: Hilberg’s conjecture, mutual information, Herdan’s law, strongly nonergodic processes, 

grammar-based compression, Lempel-Ziv code 

 

1  Introduction 

It is a widely accepted view that texts produced by humans strongly diverge from both pure 

randomness and pure determinism (Zipf, 1965, p. 187). In the quantitative research of natural 

language one cannot, however, confine to such a statement but rather one has to investigate 

mathematical measures of nonrandomness and nondeterminism of texts (cf. e.g. Rao, 2010). Some 

quantitative measure of predictability of text is conditional entropy. An interesting observation 

concerning this quantity has been made by Hilberg (1990). Namely, he noticed that the conditional 

entropy of a letter given n previous letters decays as n
−1+β

, where β ≈ 0.5. Hilberg made this 

observation using the table of conditional entropy estimates in the famous article by Shannon 

(1951). Although Shannon’s data points extended only to n = 100 letters of context, Hilberg 

supposed that a similar relationship holds also for much larger n, being a length of a random text or 

even longer. 

Hilberg’s paper (1990) was published in German in a local telecommunications journal and passed 

unnoticed by linguists. The first interest it received came from physicists seeking to understand 

properties of so called complex systems (Ebeling and Nicolis, 1991, 1992; Ebeling and Pöschel, 

1994; Bialek et al., 2001b,a; Crutchfield and Feldman, 2003). Their main contribution was showing 

that Hilberg’s conjecture implies that so called mutual information between two adjacent text 

blocks of length n is proportional to n
β
. This is a weaker and more realistic statement since it does 



not imply that human language production is deterministic in the limit.
1
 We shall call this statement 

a relaxed Hilberg conjecture. It should be noted that even the relaxed Hilberg conjecture is 

incompatible with the conjecture of constant conditional entropy, recently proposed by cognitive 

scientists and critically examined by Ferrer-i-Cancho et al. (2013). 

In this paper we would like to review the research in the relaxed Hilberg conjecture pushed forward 

in the last decade by Dębowski. He sought to put this hypothesis in the linguistic context while at 

the same time trying to develop a sound formal theory. Except for the initial paper (Dębowski, 

2006), published in this journal, the research was mostly presented in engineering and mathematical 

periodicals, because of its technical involvement. However, these later results may be also highly 

interesting for linguists and thus worth popularizing in this venue. A similar review for physicists 

and researchers working in complex systems was published by Dębowski (2011a). 

We hope that this paper may raise interest of general theoretical linguists and cognitive scientists. 

Seen from a larger perspective, Hilberg’s conjecture inspires important and interesting questions 

about the amount of general and specific knowledge conveyed by texts, emergence of linguistic 

structure and patterns from a hypothetical stochastic process of speech or thinking, and interplay of 

randomness and determinism in human cognition as an attempt to model complexity of the world 

constrained by the organization of the brain and society. Culture, linguistics, pretty deep math, and 

who knows, maybe some physics, seem finally intertwined by means of a few results.  

The main achievement of Dębowski was linking the relaxed Hilberg conjecture with two analogues 

of Herdan’s law on the level of set phrase frequency and of text semantics. The original Herdan law 

is an observation that the number of distinct words observed in a text of length n is proportional to 

n
β
 (Kuraszkiewicz and Łukaszewicz, 1951; Guiraud, 1954; Herdan, 1964; Heaps, 1978). By an 

analogy, we will say that Herdan’s law holds for another kind of objects if the number of the 

respective object types in a text of length n is proportional to n
β
. In the following we shall speak of 

two kinds of Herdan’s law as mathematical statements rather than empirical facts. 

The first kind of Herdan’s law we will discuss concerns nonterminal symbols of admissibly 

minimal grammar-based compressions of texts and will be called shortly Herdan’s law for 

nonterminal symbols. A few words of clarification are needed here. Roughly speaking, admissibly 

minimal grammar-based codes are compression algorithms that represent a text as the smallest 

context-free grammar that generates the text as its sole production (Kieffer and Yang, 2000; 

Dębowski, 2011b). By the results of Charikar et al. (2005), we may suppose that these algorithms 

are computationally intractable. However, nonterminal symbols of certain grammar-based codes 

which are similar in principle to admissibly minimal grammar-based codes often correspond to 

words or set phrases, like United Kingdom, when these codes are applied to texts in natural 

language (Wolff, 1980; de Marcken, 1996; Nevill-Manning, 1996; Kit and Wilks, 1999). Thus we 

may expect that Herdan’s law for nonterminal symbols is a certain approximation of Herdan’s law 

for words. Investigating mathematical properties of admissibly minimal grammar-based codes, 

Dębowski (2006, 2011b) showed that Herdan’s law for nonterminal symbols is a consequence of 

the relaxed Hilberg conjecture. Namely, if an arbitrary stationary stochastic process satisfies the 

relaxed Hilberg conjecture then texts generated by this process satisfy Herdan’s law for nonterminal 

symbols. Precisely, a heuristic proof of this theorem was given by Dębowski (2006), whereas a 

                                                           

1 Vanishing entropy rate is equivalent to determinism e.g. by Lemma 4 of Dębowski (2009). 



mathematically sound demonstration was provided by Dębowski (2011b). 

Subsequently, Dębowski was interested for which stochastic processes the relaxed Hilberg 

conjecture is satisfied. He supposed that Hilberg’s conjecture may stem from the fact that texts 

convey extremely large amounts of knowledge in a repetitive way, in particular by consistently 

referring to an external world. To model this phenomenon, Dębowski (2009) defined a class of 

strongly nonergodic stochastic processes that formalizes the concept of texts which repetitively 

describe a random reality. The defining feature of these processes is the existence of an infinite 

number of binary random variables, called facts, which can be learned from any sufficiently long 

text, i.e., a finite section of the process. Dębowski (2011b) showed that if texts generated by a 

strongly nonergodic process satisfy Herdan’s law for those facts then the process satisfies the 

relaxed Hilberg conjecture. To prove that such random texts exist, Dębowski (2011b, 2012b) 

constructed a class of toy processes, called Santa Fe processes. Although highly idealized, Santa Fe 

processes can be given a natural linguistic interpretation. 

Dębowski’s results may be viewed as an explanation of Hilberg’s conjecture and the distribution of 

words in texts created by humans. They show that the relaxed Hilberg conjecture and various kinds 

of Herdan’s law have a very natural place in natural language. This conclusion can be supported 

experimentally. Dębowski (2013a) tested the relaxed Hilberg conjecture directly, using the Lempel-

Ziv code (Ziv and Lempel, 1977) on a sample of ten texts in English. He obtained the exponent β'', 

an upper bound of β, close to 0.94. In this paper we will show that the exponent β for a selection of 

21 texts in German and French is also close to 0.94. Thus we may formulate a hypothesis that 

Hilberg’s conjecture holds for other languages and a similar value of the exponent may be observed. 

In the remaining sections, we will address particular points of Dębowski’s research in more detail. 

In Section 2, we will discuss Hilberg’s conjecture, the original and its refinements. In Section 3, we 

will exhibit some probabilistic models of texts that obey Hilberg’s conjecture. Section 4 concerns 

links between Hilberg’s conjecture and grammar-based compression. In Section 5 we present some 

old and new empirical data. Section 6 offers the conclusion. 

 

2  Hilberg’s conjecture and its refinements 

Let us begin with a brief introduction to information theory, cf. Cover and Thomas (2006). The 

basic notion of information theory is the entropy of a random variable on a probability space. For a 

random text   
  (            ) , where random variables    assume values of consecutive 

characters, the entropy is defined as 

 (  
 )   ∑

  
  (  

    
 )     (  

    
 )  

(1) 

where P is the probability measure and   
  (            ) is a value that the random variable 

  
 assumes. This concept of entropy can be linked to text compression, or coding. For a uniquely 

decodable code, denoted C, the expectation of its length | (  
 )| cannot be smaller than the entropy, 

i.e., 

∑
  

  (  
    

 )| (  
 )|   (  

 )  
(2) 



There exists, however, a uniquely decodable code C with lengths 

| (  
 )|  [     (  

    
 )]  (3) 

where [y] is the smallest integer greater or equal y. Code (3) is called the Shannon-Fano code and 

satisfies 

∑
  

  (  
    

 )| (  
 )|   (  

 )     
(4) 

Whereas entropy pertains to a random variable, the length of the Shannon-Fano code (3) could be 

considered the information content of an individual (not random) text   
  (            ), such as 

a particular text in natural language. Alas, we cannot evaluate the length of the Shannon-Fano code 

if the proper probability distribution cannot be effectively identified and computed. In his seminal 

paper on defining the concept of information, Kolmogorov (1965) remarked that this may be well 

the case of texts in natural language. Subsequently, he proposed to define the information content of 

an individual text   
  as the length of the shortest program for a universal computer that makes the 

computer write   
  on its output.

2
 This quantity is called Kolmogorov complexity  (  

 ). For any 

computable code C there exists a constant c such that  

 (  
 )  | (  

 )|     (5) 

Since Kolmogorov complexity is itself the length of a computable code, we obtain  

∑
  

  (  
    

 ) (  
 )   (  

 ) 
(6) 

for a random variable   
  on a particular probability space. In case of a computable probability 

distribution the Shannon-Fano code is also computable so, from (4) and (5), we obtain  

∑
  

  (  
    

 ) (  
 )   (  

 )       
(7) 

In view of (6) and (7), the expectation of Kolmogorov complexity for computable distributions is 

close to entropy. For noncomputable distributions, however, the difference between Kolmogorov 

complexity and entropy can be arbitrarily large.  

Whereas a disadvantage of entropy is the necessity of finding the right probability distribution, a 

disadvantage of Kolmogorov complexity is that it is not computable itself. Nonetheless there exists 

a middle path to measuring information content of individual texts, which is universal coding. A 

universal code is a uniquely decodable computable code C which for any stationary stochastic 

process (  )    
  (i.e. an infinite sequence of random variables whose probability distribution is 

invariant with respect to shifting) asymptotically achieves the optimal compression rate  

   
   

 

 
∑

  
  (  

    
 )| (  

 )|     
(8) 

                                                           

2 A universal computer is a mathematical model of a computer that has infinite working memory and is capable 

of computing any computable function. A Turing machine is a classical model of a universal computer (Li and Vitányi, 

2008).  



where h is the entropy rate, defined as  

     
   

 

 
 (  

 )  
(8) 

Some examples of universal codes are the Lempel-Ziv code (Ziv and Lempel, 1977) or grammar-

based codes (Kieffer and Yang, 2000; Dębowski, 2011b). Using these codes, we can effectively 

measure the information content of an individual text. In particular, these codes are used for natural 

language data compression.  

Now we can introduce Hilberg’s conjecture. Originally it deals with conditional entropy  

 (    
   ⁄ )   ∑

  
  (  

    
 )     (       

   ⁄    
   )  

(10) 

Shannon (1951) attempted to estimate this quantity for printed English using a guessing method. A 

few decades later, Hilberg (1990) replotted these estimates in the doubly logarithmic scale and 

observed an approximate power-law relationship  

 (    
   ⁄ )         (11) 

where β ≈ 0.5 and n ≤ 100 characters. When extrapolated to arbitrary n, this relationship implies  

 (  
 )  ∑

 
   

 (    
   ⁄ )  ∫            

(12) 

Hence we obtain a power law for the joint entropy per token  

 (  
 )

 
        

(13) 

Relationship (13) is the original Hilberg conjecture.  

Having derived (13), Hilberg conjectured that the entropy rate (9) amounts to zero. This proposition 

implies asymptotic determinism of human utterances (i.e. the next character of a text is a function of 

the infinite past (Dębowski, 2009, Lemma 4)) and theoretical possibility of compression of texts 

which goes far beyond present state of the art. Whereas one cannot exclude this case a priori, it may 

be safer to assume that  

 (  
 )

 
           

(14) 

where constant h is strictly positive. This proposition may be called a relaxed Hilberg conjecture for 

random texts.  

Under the assumption of stationarity, the relaxed Hilberg conjecture can be simpler expressed using 

mutual information. The Shannon mutual information between two random blocks of length n is 

defined as  

  (  
      

  )   (  
 )   (    

  )   (  
  )  (15) 

Assuming that  (    
   ) does not depend on i (a form of stationarity!), for relationship (14) we have  

  (  
      

  )            (  )           (16) 



where   (    ) . Indeed, relationship (16) is equivalent to (14). To prove it, let us observe 

that (16) implies  

 (  
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(17) 

 (∑
 

   

   

    
)               

(18) 

Hence, assuming stationarity, the relaxed Hilberg conjecture for random texts states equivalently 

that mutual information between two adjacent text blocks grows as a power of the block length.  

Relationships (14) and (16) are, practically speaking, impossible to test experimentally since the 

exact probability distribution for texts in natural language is unknown. As a first improvement, it 

seems more proper to speak of Kolmogorov complexity  (  
 ) of an individual text   

  rather than 

of the entropy  (  
 ) of a random variable   

 . Thus another plausible modification of Hilberg’s 

conjecture reads  

 (  
 )

 
              

(19) 

Some problem with hypothesis (19) is, however, that it falsely assumes that  (  
 ) grows uniformly 

with   
 , whereas e.g. for a sequence of independent identically distributed variables   

  there arise 

random fluctuations of Kolmogorov complexity  (  
 ) of order √        .

3
 We may consider 

(19) only if     ⁄ . Fortunately, these rather large fluctuations cancel if we consider the 

algorithmic mutual information between two individual texts blocks, defined as  

  (  
      

  )   (  
 )   (    

  )   (  
  )  (20) 

Thus, the term ‘the relaxed Hilberg conjecture for individual texts’ will be rather used for 

proposition  

  (  
      

  )         (21) 

Hypothesis (21) is still impossible to test empirically since Kolmogorov complexity is 

incomputable. Thus for the sake of effective testing, we could consider a universal code C, measure 

its length | (  
 )| for a text   

 , and investigate the relationships  

| (  
 )|

 
                

(22) 

and  

  (  
      

  )           (23) 

where   (  
      

  ) is the code-based mutual information  

  (  
      

  )  | (  
 )|  | (    

  )|  | (  
  )|  (24) 

                                                           

3 In that case  (  
 ) is close to  ∑

 
   

    (  ) , which is a sum of independent identically distributed 

variables and the fluctuations thereof are described by the law of iterated logarithm (Billingsley, 1979, Section 9).  



Proposition (23) will be called a relaxed Hilberg conjecture for code C. As we will show in Section 

5 both formulae (22) and (23) fit the empirical data very well for β ≈ 1, h ≈ 0, and     

(      )   . Miraculously, the fluctuations of | (  
 )| are relatively small and dominated by the 

term A''n
β''

. 

In certain cases, the three flavors of the relaxed Hilberg conjecture can be related to one another. If 

relationships (19) and (22) are satisfied for random texts drawn from a stationary process then we 

obtain h = h' = h'' and β ≤ β' ≤ β'' by relationships (2), (5), and (8). Alas, there exist nonstationary 

stochastic processes for which h < h' < h'' and exponents β, β', and β'' cannot be interrelated. Even 

in the case of natural language, where we have problems with identifying the probability 

distribution, we need not have a priori h' = h'' and β' ≤ β''. Nonetheless, the relaxed Hilberg 

conjecture (23) can be investigated for natural language on its own interest using efficiently 

computable universal codes.  

 

3  Texts repetitively describing a random reality  

One can ask the question why Hilberg’s conjecture might be satisfied. In fact, origins of the relaxed 

Hilberg conjecture may be traced in the narrative coherence of texts. By the narrative coherence we 

understand the following observation. Before we read the title of a book, we hardly have any 

preconception what it may be about. But if we begin reading a text in English, we expect that the 

remaining part of the text is also in English. If we commence reading a manuscript on mathematics, 

we expect formulas to permeate the manuscript. If we start reading a novel about a heroine called 

Alice, we expect that Alice remains the heroine until the end of the novel. The number of such 

narrative constraints in texts is a priori unlimited. It is important to observe that these constraints, 

although they persist within a text, are mostly random. Thus we may say that texts in natural 

language repetitively describe a random reality. As we will see, if this random reality can be learned 

from texts sufficiently fast then the relaxed Hilberg conjecture is satisfied. The intuition is that 

similar portions of the random reality can be learned independently from two adjacent blocks of text 

and the mutual information between the blocks cannot be smaller than the amount of the inferred 

knowledge.  

Dębowski (2011b, 2012b) proposed the following mathematical model. Let (  )    
  be a sequence 

of random variables that assume values from a countable set Y, called the alphabet. This sequence 

will model an infinitely long text, the totality of natural language production, where    are 

consecutive text units. We can imagine that the values of    are characters if the alphabet is finite, 

or words or sentences if the alphabet is infinite. Moreover, let (  )   
 be a sequence of independent 

random variables that assume value 0 or 1 with equal probability. We can imagine that the values of 

   are logical values (1 = true and 0 = false) of certain systematically enumerated independent 

propositions which concern the reality described in the text in a repetitive way. In some 

interpretation, propositions   ’s resume the knowledge of the described world in the most concise 

form. Dębowski called these propositions briefly facts. He assumed that the facts are a priori 

unknown to the reader of the text but can be asymptotically learned from any sufficiently long 

section of the infinite text. Thus he obtained this definition:  

Definition 1 (Dębowski, 2011b). A stochastic process (  )    
  is called strongly nonergodic if 

there exist independent binary variables (  )   
  with  (    )   (    )  

 

 
 and functions 



    
       ,4 k = 1, 2, 3, ..., such that for all t and k,  

   
   

 (  (    
   )    )     (25) 

Functions sk are motivated by the idea that there is a definite method of interpreting finite texts in 

natural language to infer facts about the random world. This method is simply the human language 

competence. Definition 1 assumes that facts, or in other words, the knowledge, mentioned in texts 

can be learned by text readers ultimately, regardless of their starting point. The actual linguistic 

reality is a bit more complicated. Facts that are mentioned repeatedly can be divided into two 

classes: (i) facts about the unchangeable objective world (like mathematical or physical constants), 

which can be discovered and reported independently by successive generations of text creators, and 

(ii) facts about historical heritage (like fiction, culture, language, or geography), which are subject 

to distributed creation, accumulation, and lossy transmission from text creators to text readers. 

Whereas the first class of facts falls under the scope of Definition 1, the second class is not captured 

because these facts may be forgotten and cannot be learned from the text in the distant future.  

An important characteristic of a strongly nonergodic process is the number of facts that can be 

predicted from a given finite text with a sufficiently high probability. The sets of those facts may be 

defined as  

  ( )        (  (  
 )    )      (26) 

where δ is a fixed constant close to 1, whereas |  ( )| will denote the number of elements in   ( ). 

By an analogy to the word distribution, we will say that Herdan’s law is obeyed for facts if the 

number of facts that can be predicted from the text grows as a power of the text length, i.e,  

|  ( )|      (27) 

The subsequent theorem states that if we have Herdan’s law for facts then the relaxed Hilberg 

conjecture must hold with an exponent greater or equal as in the Herdan law for facts.  

Theorem 1 (Dębowski, 2011b). Let (  )    
  be a stationary strongly nonergodic process over a 

finite alphabet Y and define sets (26), where functions sk satisfy (25). Suppose that inequality  

          

|  ( )|

  
   

(28) 

holds for some β ∈  (0, 1) and δ ∈  (1/2, 1).
5
 Then  

          

  (  
      

  )

  
    

(29) 

The world of stochastic processes is very rich and maybe there dwells a process that models human 

language production sufficiently well. If this process satisfies Herdan’s law for facts then, by 

                                                           

4 Symbol Y* denotes the set of all finite strings obtained by concatenating symbols from Y. 

5 The lower limit of a sequence is defined as                            , where          is the 

largest number r such that r ≤ am for all m ≥ n. Analogously, we define the the upper limit of a sequence as 

                           , where          is the smallest number r such that r ≥ am for all m ≥ n. Th 

upper and the lower limits exist for any sequence but may be different. We have                           in 

general. The upper and the lower limits are equal if and only if         . Then          is their common value.  



Theorem 1, it also satisfies the relaxed Hilberg conjecture (29). However, an honest mathematician 

should show that Theorem 1 is not void, that is, there exists at least one process which satisfies 

Herdan’s law for facts. Exhibiting such a simplistic instance in this paper may be also helpful to 

imagine what may happen in natural language. Dębowski (2011b) introduced the following 

example, which he called a Santa Fe process.  

Definition 2 (Santa Fe process). Let the process have the form  

   (      
)  (30) 

where (  )   
  and (  )    

  are probabilistically independent, (  )   
  are as in Definition 1, 

whereas (  )    
  is a sequence of independent variables that satisfy the Zipf-Mandelbrot law  

 (    )      ⁄   (31) 

where β ∈  (0, 1). Number β is the only parameter of the process.
6
 

The Santa Fe process can be given such an idealized linguistic interpretation: Imagine that (  )    
  

is a sequence of consecutive statements extracted from an infinitely long text that describes an 

infinite random object (  )   
  consistently. In this description, each statement    (   ) reveals 

both the address k of a random bit of (  )   
  and its value Zk = z. Logical consistency of the 

description is reflected in this property: If two statements    (   ) and    (     ) describe bits 

of the same address (k = k') then they always assert the same bit value (z = z').  

Dębowski (2011b) showed that Santa Fe process satisfies Herdan’s law for facts (27). Later, he 

demonstrated that the relaxed Hilberg conjecture (29) can be strengthened for this process in the 

following form.  

Theorem 2 (Dębowski, 2012b). Let β ∈  (0, 1). The Santa Fe process obeys  

   
   

  (  
      

  )

  
    

(32) 

Let us note that the random object(  )   
  described by the Santa Fe process (30) does not evolve 

in time. As we have said, the actual linguistic reality is a bit more complicated. Besides describing 

real or fictitious worlds that do not change in time, texts in natural language describe worlds that 

evolve with a varied speed. To encompass the latter property of texts in natural language, we may 

generalize the Santa Fe process as follows.  

Definition 3 (generalized Santa Fe process). Let the process have the form  

   (        
)  (33) 

where processes (  )    
  and (   )    

 , where k ∈  N, are independent and distributed as follows. 

First, variables Ki are distributed according to formula (31), as before. Second, each process 

(   )    
  is a Markov chain with marginal distribution  

                                                           

6 The Santa Fe can be easily simulated as follows. First we sample Ki = k from distribution (31). Then if Zk has 

been previously sampled, we output the previously sampled value Zk = z, otherwise we sample Zk = z from distribution 

 (    )   (    )  
 

 
.  



 (     )   (     )  
 

 
 

(34) 

and cross-over probabilities  

 (           ⁄   )   (           ⁄   )      (35) 

Numbers pk are additional parameters of the process, in principle not related to  (    ). 

The object (   )    
  described by the generalized Santa Fe process is a function of time i and the 

probability that the k-th bit flips at a given instant equals pk. For vanishing cross-over probabilities, 

pk = 0, the generalized Santa Fe process collapses to the original Santa Fe process. Dębowski 

(2012b) proved that the generalized Santa Fe process is ergodic for pk  ≠ 0, hence it is not strongly 

nonergodic. However, also in the case of pk  ≠ 0, we obtain Hilberg’s conjecture if the cross-over 

probabilities decay fast enough.  

Theorem 3 (Dębowski, 2012b). Suppose that          ⁄ (    )   . Then the generalized 

Santa Fe process obeys (32).  

The moral of this section is that some processes satisfying the relaxed Hilberg conjecture can be 

constructed quite easily and a natural linguistic interpretation can be provided for those. Of course, 

not all processes with a power-law growth of mutual information can be interpreted linguistically. 

Dębowski (2013b) presented also a few hidden Markov processes satisfying the relaxed Hilberg 

conjecture but these are of purely mathematical interest.  

 

4  Links with grammar-based compression  

Another important result concerning the relaxed Hilberg conjecture involves grammar-based 

compression. Originally, grammar-based compression has been proposed as an approximate method 

for detecting word boundaries in texts lacking spaces between words, such as the output of 

automatic speech recognition (Jelinek, 1997). It has been observed that strings of characters that are 

repeated within the text sufficiently many times often correspond to whole words or set phrases like 

United Kingdom (Wolff, 1980; de Marcken, 1996; Nevill-Manning, 1996; Kit and Wilks, 1999). 

Such strings can be detected automatically using grammar-based codes (Kieffer and Yang, 2000).  

Let us present the necessary mathematical concepts. Grammar-based codes compress texts by 

transforming them first into special grammars, called admissible grammars, and then encoding the 

grammars back into texts according to a fixed simple method. An admissible grammar is a context-

free grammar that generates a singleton language, i.e., a language that contains only one string. We 

will shortly say that an admissible grammar generates this string. In an admissible grammar, there is 

exactly one rule per nonterminal symbol and the nonterminals can be ordered so that the symbols 

are rewritten onto strings of strictly succeeding symbols (Kieffer and Yang, 2000; Charikar et al., 

2005). Hence, such a grammar is given by its set of production rules  

  {

     

     

   
     

}  

(36) 



where A1 is the start nonterminal symbol, other Ai are secondary nonterminal symbols, and the 

right-hand sides of rules satisfy    (                    ) , where Y is the set of terminal 

symbols.  

A function Γ such that Γ(w) is an admissible grammar that generates string w is called a grammar 

transform (Kieffer and Yang, 2000). Many such transforms have been proposed, see Kieffer and 

Yang (2000). For example, the longest matching grammar transform for the tongue twister  

I scream, you scream, we all scream for icecream!  

returns the admissible grammar  

{

                              
       
       

        

}  

(37) 

In the compressions of longer texts, nonterminal symbols often correspond to words or set phrases, 

like A4 in (37), especially if it is additionally required that the secondary nonterminals were defined 

as strings of only terminal symbols (Kit and Wilks, 1999).  

Grammar transforms can be compared according to the so called grammar length. A few distinct 

definitions for this concept have been proposed. Kieffer and Yang (2000) defined the length of 

grammar (36) as the total length of the rules’ right hand sides,  

| |  ∑
 

   
|  |  

(38) 

where |  |  is the length of   . Subsequently, Charikar et al. (2005) investigated properties of 

grammar transforms which minimize this kind of length. In contrast, Dębowski (2011b) constructed 

admissibly minimal grammar transforms that minimize a slightly different length function. The 

exact definition of admissibly minimal transforms is too technical to present it right here. However, 

we may say that admissibly minimal transforms resemble the grammar transforms considered by de 

Marcken (1996) and Kit and Wilks (1999) in the computational linguistic task of detecting word 

boundaries .  

Denote the number of distinct nonterminal symbols in grammar (36) as  

 ( )     (39) 

By an analogy to the word distribution, we will say that Herdan’s law is obeyed for a grammar 

transform Γ if the number of distinct nonterminal symbols returned by the grammar transform 

grows as a power of the text length, i.e.,  

 ( (  
 ))      (40) 

We suppose that Herdan’s law for admissibly minimal grammar transforms can be related to 

Herdan’s law for words or set phrases. These two statements are equivalent if the number of distinct 

nonterminal symbols is proportional to the number of distinct words or set phrases in the encoded 

text. The latter claim seems likely in view of experiments by de Marcken (1996) and Kit and Wilks 

(1999). It is a good question, however, whether this claim can be efficiently empirically tested. 

Certainly, the number of nonterminals returned by the compression schemes proposed by de 



Marcken (1996) and Kit and Wilks (1999) can be efficiently computed. Nevertheless, it is known 

that grammar transforms which minimize length (38) globally are not computable in polynomial 

time (Charikar et al., 2005). The same may be true for the exact admissibly minimal grammar 

transforms. This may mean that the number of distinct nonterminal symbols in an admissibly 

minimal grammar-based compression of a text cannot be efficiently computed.  

Although probably hard to compute, admissibly minimal grammar transforms have a theoretical 

advantage. Dębowski (2011b) showed that if the relaxed Hilberg conjecture is satisfied then 

Herdan’s law for any admissibly minimal grammar transform is approximately obeyed. In the 

formal statement of this result, the maximal length of a (possibly overlapping) repeated substring in 

text w ∈  Y* will be denoted as  

 ( )      | |                       (41) 

where s, xi, yi ∈  Y*. According to the reasoning presented by Dębowski (2011b) we have:  

Theorem 4. Let (  )    
  be a stationary process over a finite alphabet Y with entropy rate h > 0. 

Assume that inequality  

          

  (  
      

  )

  
   

(42) 

holds for some β ∈  (0, 1). Let Γ be an admissibly minimal grammar transform. Then we have  

          

∑
  

  (  
    

 ) ( (  
 ))(   (  

 ))

  
    

(43) 

Theorem 4 states that if the relaxed Hilberg conjecture is satisfied then we have Herdan’s law for 

any admissibly minimal grammar transform provided the length of the longest repeated string in the 

text does not grow too fast. The latter condition can be asserted in a few interesting cases. For 

example, for an encoding of the Santa Fe process (30) into a finite alphabet, the maximal length of 

repeat is proportional to the logarithm of the text length,  

 (  
 )       (44) 

(Dębowski, 2010, 2011b). In contrast, for a sample of texts in English, Dębowski (2012a) checked 

experimentally that the maximal length of repeat is proportional to a power of the logarithm of the 

text length,  

 (  
 )  (    )  (44) 

where α < 4. Hence we may say that in the relevant cases the relaxed Hilberg conjecture implies 

Herdan’s law for any admissibly minimal grammar transform.  

 

5  Empirical data  

The original Hilberg conjecture (13) is hard to test since human guessing estimates of conditional 

entropy are extremely costly to obtain and prone to large errors. These costs and errors get extreme 

if we wish to test Hilberg conjecture (13) for very long contexts imagined by Hilberg, such as the 

order of a novel length. In contrast, the relaxed Hilberg conjecture for universal codes, (22) and (23), 



can be tested effectively using texts of any conceivable length.  

As our preliminary study shows, the obtained exponent β in conjecture (22) is much larger than β ≈ 

0.5 supposed by Hilberg in conjecture (13). For the sake of testing Hilberg’s conjecture, we have 

compressed 31 texts written in English, German, and French.
7
 The texts have been downloaded 

from the Project Gutenberg
8
 and are listed in Table 2. We have deleted the licenses contained in the 

text files and we reduced the alphabet to 27 symbols (26 capital letters and a space), stripping all 

diacritics, numbers, and punctuation marks, as it has been usually done in previous publications 

concerning the entropy of English (Shannon, 1951; Cover and King, 1978). Subsequently, we have 

measured the length of the Lempel-Ziv code for prefixes of the text sequence of an exponentially 

increasing length. The Lempel-Ziv code was provided by our own implementation done for the 

alphabet of 27 symbols and featuring an infinite buffer, which assures the universality. The 

dependence of the compression rate on the block length is given in Figures 1, 3, and 5, for each 

language separately, whereas the data concerning the mutual information are plotted in Figures 2, 4, 

and 6.  

Using the nonlinear least-squares (NLLS) Marquardt-Levenberg algorithm, we have fitted the 

following simple model for the compression rate. Let | (  
 )| denote the length of the Lempel-Ziv 

code for the text of length n (in characters). The fitted model has been (22) with free parameters A'' 

and β'' whereas h'' has been set to 0. This provided a very satisfactory fit, whereas letting h'' vary 

resulted in nonconverging computation, for an undiscerned reason. In this way we have obtained: 

a) for English:  

| (  
 )|

 
              [   ]  

(46) 

b) for German:  

| (  
 )|

 
              [   ]  

(47) 

c) for French:  

| (  
 )|

 
              [   ]  

(48) 

The parameters of the models for different languages are very similar. The data summarizing the 

quality of the fitted models are given in Table 1. In the table, SE stands for the standard error and 

RMSE is the root mean square error.  

From the compression rate, we can easily compute the mutual information. The fit for parameters 

A'' and β'' has been so good, that we have decided to use formula (23) with     (      )   , 

where A'' and β'' are the estimated parameters. In this way, we have obtained:  

a) for English:  

  (  
      

  )             [    ]  (49) 

                                                           

7 The results concerning English have been previously published in the conference paper Dębowski (2013a).  

8 http://www.gutenberg.org/  



b) for German: 

  (  
      

  )             [    ]  (50) 

c) for French: 

  (  
      

  )             [    ]  (51) 

All formulae fit very well.  

It may be somewhat surprising that models (46), (47), and (48) fit so well although they contain no 

constant term h'' > 0, supposed in conjecture (22). We know, however, from independent studies 

that the asymptotic entropy rate h ≤ h'' for English is less than 1.25 bpc (Cover and King, 1978). In 

contrast, the lowest compression rate that we observe in Figures 1, 3, and 5 is about 3.0 bpc. Thus 

we cannot exclude the possibility that the compression rate is asymptotically bounded below by the 

value of 1.25 bpc or somewhat smaller.  

 

6  Conclusion  

The relaxed Hilberg conjecture is a statement that the mutual information between two adjacent 

blocks of a text in natural language grows very fast, namely, as a power of the block length. In the 

present paper we have reviewed a few important results concerning this conjecture. First, we have 

reported that the conjecture occurs when texts in natural language repeatedly describe a random 

reality and Herdan’s law pertaining to facts repeatedly described in the texts is obeyed. Second, we 

have communicated that the relaxed Hilberg conjecture implies Herdan’s law for set phrases. Third, 

we have shown that the conjecture can be positively tested for texts in English, German, and French 

using the Lempel-Ziv code. The parameters of the fitted models for those languages are very similar, 

which is not so surprising given our observation that the origins of Hilberg’s conjecture lie in text 

meaning. 

All these observations make the relaxed Hilberg conjecture a very probable and weighty hypothesis 

concerning natural language. The fundamental importance of Hilberg’s conjecture can be 

corroborated by the fact that Herdan’s law for set phrases, a corollary of Hilberg’s conjecture, can 

be probably associated with the better known Herdan law for words, which is in turn a consequence 

of the celebrated Zipf-Mandelbrot law. Just to recall, the Zipf-Mandelbrot law states that the word 

frequency is an inverse power of the word rank on the frequency list (Zipf, 1965; Mandelbrot, 1954).  

We think that Hilberg’s conjecture deserves further research and extensive testing for a wide 

selection of texts and languages, including also non-Indoeuropean languages, which are 

typologically different from the considered three languages. The exponent in the relaxed Hilberg 

conjecture can be connected to the text meaning and thus should be invariant with respect to text 

translation from one language into another. In contrast, we may expect a priori a larger variation of 

the exponent across texts that are not related to one another. It should be noted, however, that in the 

present data this variation is hardly visible when we tried to compress texts using the Lempel-Ziv 

code. Thus Hilberg’s conjecture for the Lempel-Ziv code can be potentially a general quantitative 

linguistic law, as it was named by Dębowski (2006).   

It may be also interesting to investigate Hilberg’s conjecture for large corpora. Although corpora 

are very imperfect models of large-scale human communications (since by their construction, they 



are randomized and do not contain longer narrations), they exhibit curious second regimes of Zipf’s 

law for very large ranks (Ferrer i Cancho and Solé, 2001; Montemurro and Zanette, 2002; Petersen 

et al., 2012). It might be insightful to verify whether an analogous second regime arises also for 

Hilberg’s conjecture for large corpora. Possibly, a positive asymptotic lower bound for the 

compression rate can be effectively observed as well.  

We should also be aware that mathematical investigations of Hilberg’s conjecture are not completed 

yet, either. The estimates of entropy given by the Lempel-Ziv code may be strongly biased and 

some better estimation procedures should be provided by mathematically inclined researchers. 

Another bundle of questions is whether the entropy rate of texts in natural language is actually zero, 

what plausible mathematical models of this phenomenon are, and why typical compression 

algorithms cannot compress the texts as well as suggested by the original Hilberg conjecture. 

Finally, an anonymous referee noted that considering mutual information between nonadjacent 

blocks and nonstationary processes can be also an interesting idea. We suppose that scaling of 

mutual information for non-adjacent blocks can be a property that distinguishes texts in natural 

language from the Santa Fe processes discussed in this paper. Developing this idea requires further 

work. 
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language A'' SE of A'' β'' SE of β'' RMSE 

English 6.22 0.07 0.949 0.001 0.0987 

German 6.73 0.10 0.942 0.002 0.1106 

French 6.19 0.07 0.950 0.001 0.0874 

Table 1. Summary of the fitted models.  

 



English texts:   

Title  Author  

First Folio/35 Plays  W. Shakespeare  

Critical & Historical Essays  T. B. Macaulay  

The Complete Memoirs  J. Casanova  

Memoirs of Comtesse du Barry  E. Lamothe-Langon  

The Descent of Man  C. Darwin  

Gulliver’s Travels  J. Swift  

The Mysterious Island  J. Verne  

Mark Twain, a Biography  A. B. Paine  

The Journal to Stella  J. Swift  

Life of William Carey  G. Smith  

German texts:   

Title  Author  

Die Abenteuer Tom Sawyers  M. Twain  

Alice’s Abenteuer im Wunderland  L. Carroll  

Also Sprach Zarathustra  F. Nietzsche  

Buddenbrooks  T. Mann  

Faust  J. W. von Goethe  

Die Göttliche Komödie  D. Alighieri  

Kritik der reinen Vernunft  I. Kant  

Der Tod in Venedig  T. Mann  

Die Traumdeutung  S. Freud  

Die Verwandlung  F. Kafka  

French texts:   



Title  Author  

20000 Lieues sous les mers  J. Verne  

Candide  Voltaire  

Le comte de Monte-Cristo, Tome I  A. Dumas  

Discours de la méthode  R. Descartes  

L’homme qui rit  V. Hugo  

Madame Bovary  G. Flaubert  

Les misérables, Tome I  V. Hugo  

Oeuvres complètes  F. Villon  

Le Rouge et le Noir  Stendhal  

Les trois mousquetaires  A. Dumas  

Voyage au centre de la terre  J. Verne  

Table 2: The selection of compressed texts.  

 



 

Figure 1: Compression rate vs. block length for the English texts. The solid line corresponds to 

regression (46).  

 

 

Figure 2: Mutual information vs. double block length for the English texts. The solid line 

corresponds to regression (49).  

 



 

Figure 3: Compression rate vs. block length for the German texts. The solid line corresponds to 

regression (47).  

 

 

Figure 4: Mutual information vs. double block length for the German texts. The solid line 

corresponds to regression (50).  

 



 

Figure 5: Compression rate vs. block length for the French texts. The solid line corresponds to 

regression (48).  

 

 

Figure 6: Mutual information vs. double block length for the French texts. The solid line 

corresponds to regression (51).  

 


