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Abstract. We review three mathematical developments linked with Hilberg’s
conjecture – a hypothesis about the power-law growth of entropy of texts in
natural language, which sets up a challenge for machine learning. First, con-
siderations concerning maximal repetition indicate that universal codes such
as the Lempel-Ziv code may fail to efficiently compress sources that satisfy
Hilberg’s conjecture. Second, Hilberg’s conjecture implies the empirically ob-
served power-law growth of vocabulary in texts. Third, Hilberg’s conjecture
can be explained by a hypothesis that texts describe consistently an infinite
random object.
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1. Introduction

May generation of texts in natural language be described by a probabilistic model?
Researchers from several domains worked on this problem: linguists, mathemati-
cians, engineers, and physicists. The theoretical difficulties inspired a few important
concepts in applied mathematics, such as Markov chains [32], entropy [35, 36], frac-
tals [30, 31], and algorithmic complexity [26]. A common intuition is that texts
are a result of a process that is neither purely deterministic nor purely random
[41, p. 187], which makes them so difficult to model using established mathematical
frameworks. A few statistical laws of language have been, however, observed, such as
the Zipf-Mandelbrot law [31, 41], Herdan’s law [18, 19, 20, 28], Menzerath’s law [33],
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and a few other [25]. This suggests that some well-defined stochastic process may
describe the generation of texts in natural language, although we have tremendous
problems in identifying or approximating this process efficiently.

The question of probabilistic language modeling is no longer of only theoretical
importance. Statistical language modeling is highly relevant for practical applica-
tions, for instance, for speech recognition. The problem of speech recognition is to
provide a system for automated transcription of human speech (acoustic wave) into
written text. This task has been partially solved by providing two imperfect models:
P (A|W ) – probability of speech A corresponding to a given text W , and P (W ) –
probability of text W . Consequently, to obtain the most probable text corresponding
to a given speech signal, we use Bayes theorem

max
W

P (W |A) = max
W

P (A|W )P (W ). (1)

The quality of a speech recognition system depends on both models P (A|W ) and
P (W ). State-of-the-art modeling of P (W ) consists in approximating the hypothet-
ical stochastic process by Markov chains but we know this is not optimal [22].

Why is modeling P (W ) so difficult? Can some insight into the practical task of
statistical language modeling be provided by more theoretically-oriented research?
We may suppose that randomness of texts must be strongly constrained by the ex-
istence or the search for meaning but the meaning itself may manifest as a form of
apparent randomness. Here we may invoke the idea of halting probability, the num-
ber Ω, which is apparently random but stores an infinite amount of mathematical
knowledge [29, Section 3.6.2]. Something highly puzzling must be going about in-
formation in natural language but we should not lose hope that we may get some
insight into the phenomena. We have both to look at empirical data and to build
idealized mathematical models.

In this article we would like to show that there is a hypothetical property of
natural language, called Hilberg’s conjecture, which can model some of the observed
regularities and difficulties. For a discrete random variable X on a probability space
(Ω,J , P ) denote the random variable P (X), which takes value P (X) = P (X = x)
for X = x. Then the Shannon entropy of X is defined as

H(X) = E [− logP (X) ], (2)

where EX is the expectation of X and log denotes the binary logarithm. For
a stochastic process (Xi)i∈Z we denote blocks of variables Xi as X l

k = (Xi)
l
i=k

and, if the process is (strictly) stationary, we define block entropy H(n) = H(Xn
1 ).

The core of Hilberg’s conjecture [21] is that texts in natural language can be modeled
by a stationary process, where the variables take values in characters and the block
entropy grows according to a power law,

H(n) ≈ Bnβ , (3)

where β ≈ 0.5 and B is some positive constant. According to this hypothesis, texts in
natural language situate somewhere between determinism (β = 0) and randomness
(β = 1), just as stated in [41, p. 187]. In a certain way, they are both random and
deterministic.
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There are three important theoretical developments about Hilberg’s conjecture,
which we will describe in the following sections in more detail. First, considera-
tions concerning maximal repetition in texts indicate that universal codes such as
the Lempel-Ziv code may fail to efficiently compress sources that satisfy Hilberg’s
conjecture. Hence Hilberg’s conjecture constitutes some challenge for machine learn-
ing. Second, Hilberg’s conjecture implies Herdan’s law, i.e., the empirically observed
power-law growth of vocabulary in texts [5]. Third, Hilberg’s conjecture can be ex-
plained by a hypothesis that texts describe consistently an infinite random object
(a random world) [5].

There is some empirical evidence in favor of Hilberg’s conjecture, although it is
indirect or concerns only small block lengths. First, relationship (3) with n ≤ 100
was observed in [21] for the estimates of conditional entropy provided by [36] using
human subjects. Second, some other estimates of block entropy also corroborate (3)
[15, 16, 14, 10]. Third, growth rate of maximal repetition agrees with a lower bound
provided by a stronger version of Hilberg’s conjecture [6, 11]. Fourth, scaling of
compression rate for universal codes is also compatible with relationship (3) [8, 9, 12].

Probably, there may be fundamental problems with verifying relationship (3) for
large n and the validity of Hilberg’s conjecture must be partly decided using rational
(i.e., nonempirical) arguments. Hence we think that the greatest present problem
concerning Hilberg’s conjecture is a construction of examples of stochastic processes
that satisfy this relationship. For the relaxed Hilberg conjecture,

H(n) ≈ Bnβ + hn, (4)

where the entropy rate is h > 0, a few such constructions were given in [7, 13]. Some
of these constructions, called Santa Fe processes [7], are motivated linguistically.
But we are not aware of any example of a process that would satisfy relationship
(3), i.e., (4) with entropy rate h = 0. In particular, we ignore whether construction
of such processes can be motivated linguistically.

The further organization of the paper is as follows. In Section 2., we discuss links
of Hilberg’s conjecture with maximal repetition. In Section 3., we link Hilberg’s
conjecture with power-law growth of vocabulary. In Section 4., we connect Hilberg’s
conjecture with describing an infinite random object. We conclude in Section 5.

2. Maximal repetition

Scaling of maximal repetition provides some basic insight into Hilberg’s conjecture.
Let |w| denote the length of text w. Maximal repetition L(w) is the maximal length
of a repeated substring in text w [2, 37, 39], formally defined as

L(w) := max {|s| : w = x1sy1 = x2sy2 and x1 6= x2} , (5)

where s, xi, and yi range over all substrings of text w. For a given text w, L(w) can
be computed in time O(|w|) [27].
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For typical stationary processes, the maximal repetition grows logarithmically
with the length of the text.

Theorem 1 ([39]) Suppose that (Xi)i∈Z is a finite energy process, i.e.,

− logP (Xn
1 |X0

−k+1) = Ω(n) (6)

holds with probability 1 for all k ≥ 0. Then

L(Xn
1 ) = O (log n) (7)

holds with probability 1.

Passing an arbitrary stationary process through a symmetric memoryless noisy
channel yields a finite energy process [11, 39]. Hence there are many such processes.
However, in [6, 11], maximal repetition was computed for a collection of texts in
natural language and the empirical data satisfy a strictly larger lower bound

L(Xn
1 ) = Ω ((log n)α) (8)

with α ≈ 2.7.
Relationship (8) can be linked to some modification of Hilberg’s conjecture. We

define topological entropy of random variable X as

Htop(X) = log card {x : P (X = x) > 0} . (9)

It can be easily shown that Htop(X) ≥ H(X). For a stationary process (Xi)i∈Z, we
put Htop(n) = Htop(X

n
1 ). Obviously Htop(n) ≥ H(n).

Theorem 2 ([11]) Suppose that a stationary process (Xi)i∈Z satisfies relationship

Htop(n) = O(nβ), (10)

where β ∈ (0, 1]. Then (8) holds for α = 1/β with probability 1.

We suppose that links between Hilberg’s conjecture and maximal repetition are
stronger. The natural language data support also an upper for maximal repetition

EL(Xn
1 ) = O ((log n)α) , (11)

cf. [6, 11]. Hence if generation of texts in natural language may be modeled by
a process that satisfies the original Hilberg conjecture (3), this definition is not void.

Definition 1 A stationary process (Xi)i∈Z is called a regular Hilberg process if

H(n) = Θ(nβ), (12)

EL(Xn
1 ) = Θ ((log n)α) (13)

for certain β ∈ (0, 1) and α ≥ 1/β.

Now we will show that regular Hilberg processes, if they exist, cannot be com-
pressed efficiently using the Lempel-Ziv universal code, cf., [38]. This result stems
from the following observation (a new result of this paper):
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Theorem 3 The length |C(w)| of the Lempel-Ziv code [42] for text w satisfies

|C(w)| ≥ |w|
L(w) + 1

log
|w|

L(w) + 1
. (14)

Proof. The length of the Lempel-Ziv code for text w is greater than A logA, where
A is the number of phrases in the Lempel-Ziv parsing of the text. Each phrase in
the Lempel-Ziv parsing is a concatenation of a repeated substring and a single bit,
thus its length cannot be greater than L(w) + 1. Moreover, the sum of lengths of
the phrases equals |w|. Hence A(L(w) + 1) ≥ |w|, from which the claim follows.

Let us recall that a code C is called universal if E |C(Xn
1 )|−H(n) = o(n) for any

stationary process. In contrast, here we will say that a code C compresses a process
(Xi)i∈Z efficiently if

E |C(Xn
1 )| = O(H(n)). (15)

This condition is nontrivial for processes with zero entropy rate, such as regular
Hilberg processes. For these processes, by (14) and E

[
Y −1

]
≥ [EY ]

−1, the length
of the Lempel-Ziv code is lower bounded by

E |C(Xn
1 )| = Ω

(
n

(log n)α
log

n

(log n)α

)
(16)

and condition (15) cannot be satisfied. In fact, growth rate close to (16) has been
observed for texts in natural language. For the Lempel-Ziv code, the empirical data
support relationship

|C(Xn
1 )| = Θ(nγ), (17)

where γ ≈ 0.9 [9]. In the considered range of text lengths, the observed relationship
(17) does not preclude the theoretical bound (16).

In plain words, the above result shows that regular Hilberg processes pose some
challenge for machine learning. Namely, these sources could be very much com-
pressed if we knew their exact distribution and we used the appropriate Shannon-
Fano code. But if we do not know their distribution and we have to learn it using a
universal compression scheme, such as the Lempel-Ziv code, the resulted compres-
sion length is orders of magnitude larger than the entropy. The problem lies in that
universal codes such as the Lempel-Ziv code cannot capture the order in the process
that is hidden beyond the maximal repetition. In the next section we will show
that this deficiency applies also to some improvement of the Lempel-Ziv code, called
grammar-based codes, and leads to emergence of some hierarchical structure.

3. Grammar-based codes

Grammar-based codes [5, 23] compress texts by transforming them first into special
grammars, called admissible grammars, and then encoding the grammars back into
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texts according to a fixed simple method. An admissible grammar is a context-free
grammar that generates a singleton language, i.e., a language that contains only one
text. We will say that an admissible grammar generates this text. In an admissible
grammar, there is exactly one rule per nonterminal symbol and the nonterminals
can be ordered so that the symbols are substituted by strings of strictly succeeding
symbols [1, 23]. Hence, such a grammar is given by its set of production rules

G =





A1 → α1,
A2 → α2,
...,
Ak → αk




, (18)

where A1 is the start nonterminal symbol, other Ai are secondary nonterminal sym-
bols, and the right-hand sides of rules satisfy αi ∈ ({Ai+1, Ai+2, ..., Ak}∪X)∗, where
X is the set of terminal symbols.

A function that for a given text returns some admissible grammar that generates
this text is called a grammar transform [23]. Many such transforms have been
proposed, see [23]. For example, the longest matching grammar transform for the
tongue twister

I scream, you scream, we all scream for icecream!

returns the admissible grammar




A1 → IA2youA2we allA3 for iceA4!
A2 → A3,
A3 → sA4

A4 → cream




. (19)

In the compressions of longer texts in natural language, nonterminal symbols often
correspond to words or set phrases, like A4 in (19) [3, 34, 40], especially if it is
additionally required that the secondary nonterminals were defined as strings of
only terminal symbols [24].

Certain grammar transforms can be turned into universal codes if we apply a
certain encoding of an arbitrary grammar into a string [5, 23]. In this way we obtain
for instance admissibly minimal grammar-based codes [5]. The exact definition of
admissibly minimal grammar-based codes is too technical to reproduce it in this
paper. However, we may say that admissibly minimal grammar-based codes resemble
the grammar transforms considered in [3, 24, 34, 40] for detecting word boundaries
in texts. Hence, as we will show, there is some link between Hilberg’s conjecture
and so called Herdan’s law.

Herdan’s law is an empirical observation which states that the number of distinct
words in a text of length n is proportional to nγ , where γ ≈ 0.5 [18, 19, 20, 28].
We may suppose that the number of distinct words in a text Xn

1 can be approx-
imated by the number of distinct nonterminals V (Xn

1 ) in an admissibly minimal
grammar-based code C(Xn

1 ) for Xn
1 . Frankly speaking, this claim may be practi-

cally impossible to verify since the computational complexity of the exact admissibly
minimal grammar-based codes is probably NP-hard, cf., [1]. Nevertheless, there are
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intimate connections between statement V (Xn
1 ) = Ω(nγ) and Hilberg’s conjecture,

which stem from the remarkable inequality

|C(u)|+ |C(v)| − |C(uv)| ≤ BV (uv)(1 + L(uv)) (20)

where |C(u)| is the length of the admissibly minimal grammar-based code for text
u, B is some positive constant, and L(uv) is the maximal repetition in text uv as in
the previous section [5].

Expression on the left hand side of (20) is an estimate of mutual information

I(X,Y ) = H(X) +H(Y )−H(X,Y ). (21)

If Hilberg’s conjecture is satisfied in the original form (3) or the relaxed form (4),
then mutual information I(Xn

1 ;X2n
n+1) is proportional to nβ . Consequently we may

apply the following result:

Theorem 4 ([5]) Let (Xi)
∞
i=−∞ be a stationary process over a finite alphabet with a

strictly positive entropy rate. Assume that I(Xn
1 ;X2n

n+1) = Ω(nβ) holds for some β ∈
(0, 1). Then the number of distinct nonterminals V (Xn

1 ) in an admissibly minimal
grammar-based code C(Xn

1 ) satisfies

lim sup
n→∞

E [V (Xn
1 )(1 + L(Xn

1 )) ]

nβ
> 0. (22)

Theorem 4 states that if the relaxed Hilberg conjecture is satisfied then we have
Herdan’s law provided the maximal repetition does not grow too fast. For regular
Hilberg processes this bound could be much strengthened (a new result of this paper):

Theorem 5 Let V (Xn
1 ) be the number of distinct nonterminals in an admissibly

minimal grammar-based code C(Xn
1 ). If for a stationary process (Xi)i∈Z over a finite

alphabet the code satisfies E |C(Xn
1 )| = o(n) then

lim sup
n→∞

E
[
V (X2n

1 )(1 + L(X2n
1 ))

]

n
[

1
EL(Xn

1 ) − 1
EL(X2n

1 )

] > 0. (23)

Remark: In [5], it was proved that admissibly minimal grammar-based codes are
almost universal, i.e., they satisfy E |C(Xn

1 )| − H(n) = o(n) if H(n) = Θ(n). We
suppose that this result remains valid for sources with H(n) = o(n). This would
guarantee E |C(Xn

1 )| = o(n) for regular Hilberg processes, and then we would have

lim sup
n→∞

E [V (Xn
1 )(1 + L(Xn

1 )) ]

n/(log n)α+1
> 0. (24)

Proof. The length of an admissibly minimal grammar-based code for text Xn
1 is

greater than A – the number of terminal or nonterminal symbols in the right-hand
side of the rule for the start symbol. On the other hand, the length of the expansion of
a secondary nonterminal symbol cannot be greater than L(Xn

1 ) since every secondary
nonterminal must appear at least twice in the right-hand sides of some rules. Thus,
since the expansion of the start symbol is Xn

1 , we obtain AL(Xn
1 ) ≥ n. Hence

E |C(Xn
1 )| ≥ E

[
n

L(Xn
1 )

]
≥ n

EL(Xn
1 )
, (25)
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where we used inequality EYEY −1 ≥ 1. Now, the excess-bounding lemma [5] states
that for any function G(n) ≥ 0 which satisfies G(n) = o(n), we have 2G(n)−G(2n)
for infinitely many n. In view of bound (25) we can apply this lemma to G(n) =
E |C(Xn

1 )| − n/EL(Xn
1 ). Hence, for infinitely many n,

E
[

2 |C(Xn
1 )| −

∣∣C(X2n
1 )
∣∣ ] ≥ 2n

[
1

EL(Xn
1 )
− 1

EL(X2n
1 )

]
. (26)

To obtain the claim we chain inequality (26) with inequality (20).

The above results show that processes that satisfy the relaxed Hilberg conjecture
exhibit some rich structure which can be detected using grammar-based coding. As
we will see in the next section this structure may be somewhat apparent because
there exist very simple processes which satisfy the relaxed Hilberg conjecture.

4. Examples of processes

As we have stated in the introduction, we do not know any example of a process
that would satisfy the original Hilberg conjecture (3) but there are a few examples
of processes that satisfy the relaxed Hilberg conjecture (4). Here we will present
two such constructions called Santa Fe processes. As we have mentioned, they are
motivated linguistically to a certain extent.

The first example is as follows.

Definition 2 (Santa Fe process) Let the process have the form

Xi := (Ki, ZKi
), (27)

where (Zk)∞k=1 and (Ki)
∞
i=−∞ are probabilistically independent, (Zk)∞k=1 is a sequence

of independent random binary variables that satisfy

P (Zk = 0) = P (Zk = 1) = 1/2, (28)

whereas (Ki)
∞
i=−∞ is a sequence of independent variables that satisfy Zipf ’s law

P (Ki = k) ∝ k−1/β , (29)

where β ∈ (0, 1).

The Santa Fe process can be given such an idealized linguistic interpretation.
Imagine that (Xi)

∞
i=−∞ is a sequence of consecutive statements extracted from an

infinitely long text that describes an infinite random object (Zk)∞k=1 consistently. In
this description, each statement Xi = (k, z) reveals both the address k of a random
bit of (Zk)∞k=1 and its value Zk = z. Logical consistency of the description is reflected
in this property: If two statements Xi = (k, z) and Xj = (k′, z′) describe bits of the
same address (k = k′) then they always assert the same bit value (z = z′).

In fact, the Santa Fe process satisfies the relaxed Hilberg conjecture:
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Theorem 6 ([7]) Let β ∈ (0, 1). The Santa Fe process obeys I(Xn
1 ;X2n

n+1) = Θ(nβ).

Let us note that the random object (Zk)∞k=1 described by the Santa Fe process
(27) does not evolve in time which causes the Santa Fe process to be nonergodic [5].
This condition may be slightly relaxed so as to produce an ergodic process.

Definition 3 (generalized Santa Fe process) Let the process have the form

Xi = (Ki, Zi,Ki
), (30)

where processes (Ki)
∞
i=−∞ and (Zik)∞i=−∞, where k ∈ N, are independent and dis-

tributed as follows. First, variables Ki are distributed according to formula (29), as
before. Second, each process (Zik)∞i=−∞ is a Markov chain with marginal distribution

P (Zik = 0) = P (Zik = 1) = 1/2 (31)

and cross-over probabilities

P (Zik = 0|Zi−1,k = 1) = P (Zik = 1|Zi−1,k = 0) = pk. (32)

Numbers pk are additional parameters of the process, in principle not related to
P (Ki = k).

The object (Zik)∞k=1 described by the generalized Santa Fe process is a function
of time i and the probability that the k-th bit flips at a given instant equals pk. For
vanishing cross-over probabilities, pk = 0, the generalized Santa Fe process collapses
to the original Santa Fe process. For pk 6= 0, the generalized Santa Fe process is
ergodic [7]. However, also for pk 6= 0, we obtain Hilberg’s conjecture if the cross-over
probabilities decay fast enough.

Theorem 7 ([7]) Suppose that limk→∞ pk/P (Ki = k) = 0. Then the generalized
Santa Fe process obeys I(Xn

1 ;X2n
n+1) = Θ(nβ).

The careful reader will notice that Santa Fe processes satisfy the relaxed Hilberg
conjecture but they do not satisfy the full premise of Theorem 4 because they are not
processes over a finite alphabet (the condition of finite energy is, however, satisfied).
To overcome this deficiency, in [4], stationary variable-length coding of Santa Fe
processes was considered and it was shown that the coded processes satisfy the full
premise of Theorem 4 indeed.

5. Conclusion

In this paper we have sketched some issues connected with Hilberg’s conjecture –
a hypothesis about a power-law growth of entropy of texts in natural language.
Hilberg’s conjecture formalizes the received intuition that texts are generated by
a process which is neither purely random nor purely deterministic. Among other
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results, we have argued that universal codes such as the Lempel-Ziv code may fail to
efficiently compress some sources that satisfy Hilberg’s conjecture. Thus Hilberg’s
conjecture poses some challenge for machine learning. An interesting open question
is whether there exist simple examples of processes which satisfy this condition. For
some relaxation of that problem we know that the answer is positive.
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