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THE AXIOMS AND ALGEBRA OF AMBIGUITY 

ABSTRACT. This paper continues a study of event ambiguity as a primitive concept. 
Axioms are described for a comparative ambiguity relation on an arbitrary event set that 
are necessary and sufficient for a representation of the relation by a functional that is 
nonnegative, vanishes at the empty event, and satisfies complementary equality and 
submodularity. Uniqueness characteristics of representing functionals are discussed. The 
theory is extended to multifactor events, where marginal ambiguity and additive 
representations arise. 
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1. I N T R O D U C T I O N  

This paper continues an investigation of axioms and numerical repre- 
sentations of event ambiguity begun in Fishburn (1991). The earlier 
paper proposed eight axioms for a comparative ambiguity relation ~> 
on a set M of events under the interpretation for A ~ B that event A is 
at least as ambiguous or vague as event B. It also identified necessary 
and sufficient axioms for each of three increasingly restrictive numeri- 
cal representations of (M, ~) when M is a finite Boolean algebra. My 
purpose here is to examine generalizations and extensions of the most 
restrictive representation when M may be infinite. 

Throughout, M is a set of subsets of a state space S (Savage, 1954). 
We refer to subsets of S as events. The empty event ~ and universal 
event S are assumed to be in M. They provide a natural origin for an 
ambiguity function a :  M--~ ~ via a ( O ) =  a(S)= 0. The complement 
S\A of event A is denoted by A c. If M is dosed under complementation 
and finite unions, it is a Boolean algebra. We do not generally assume 
that these closure properties hold for M. 

Our conception of event ambiguity has roots in Keynes (1921) and 
Knight (i921). It was touched on in Savage's (1954, pp. 57-60) 
dismissal of second order probabilities, and popularized by Ellsberg's 
(1961) contention that judgments of comparative probability are af- 
fected by ambiguity in ways that contradict additivity of subjective 
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probability. Later writers, including Einhorn and Hogarth (1986), 
Curley and Yates (1989), Hazen (1989), Hogarth (1989), Schmeidler 
(1989), and Heath and Tversky (1991), embroider Ellsberg's theme in 
settings for decision making and choice behavior. 

Since ambiguity is primitive in the present treatment, it is not viewed 
as an adjunct of subjective probability. Roughly speaking, probability 
is concerned with likelihood, whereas ambiguity or vagueness (Wall- 
sten, 1990) is the antithesis of the clarity or specificity of envisioned 
events. A rare event may have low ambiguity (all 20 flips of a coin 
come up heads) or high ambiguity (humans will be extinct by the year 
2200). Similarly, a highly probable event can be very ambiguous or 
very unambiguous. In numerical representations, the principal differ- 
ence between subjective probability and ambiguity involves com- 
plementary events. For probability, p(A) + p(A ¢) = 1; for ambiguity, 
a(A) = oL(AC). The latter equality, which is expressed axiomatically as 
A~> A c whenever A, AcE M, reflects the intuition that whatever 
underlies the ambiguity of an event also underlies the ambiguity of its 
complement. When closure under complementation holds for sO, it is 
appropriate to think of ambiguity as a property of pairs {A, A ¢} of 
complementary events. 

The basic numerical representation of (M, ~) that we consider 
involves both ~> and its asymmetric part > defined by 

A > B  if A ~ B  and not ( B ~ A ) .  

We also define ~ by 

A ~ B  if A ~ B  and B~>A,  

and say that A and B are incomparable (in regard to ambiguity) if not 
(A ~> B) and not (B >~ A). The qualitative system (sO, ~>) is defined to 
be representable if there exists a :  M---~ N that has the following 
properties for all A, B E M: 

A ~  B ~  a(A) >t a(B) 

A >" B ~ a(A) > a(B) 
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= o 

a(A) >! 0 

o~(A ¢)= a(A) if ACE 

a(A O B) + a(A U B) <- a(A) + a(B) if 

A N B ,  A U B @ s g .  

The penult imate property is complementary equality, and the final 
property is subrnodularity. The initial properties require a to preserve 
>~ and > in the usual fashion, and the others say that ~ is a 
nonnegative function that vanishes at the empty event. The implication 
a (S )  = o~(O)= 0 matches our intuition that the empty and universal 
events are completely unambiguous. 

A rationale for imposing submodularity is given in Fishburn (1991). 
To  see what it presumes, suppose first that A and B are disjoint. Then 
submodularity reduces to o~(O) + ~(A U B)  ~< o~(A) + o~(B) or, since 
c~(O) = 0, to the subadditive form 

o~(A U B) ~< o~(A) + ol(B). 

This expresses the idea that the levels of vagueness associated separ- 
ately with events A and B will not compound superadditively when the 
two are conjoined. Put differently, the union of A and B may reduce 
or cancel ambiguities associated with each separately (consider B = 
AC), and will not introduce new sources of ambiguity in the combina- 
tion that outweigh such reductions. 

When A and B are not disjoint, let C = A N B ,  A ' = A \ B  and 
B' = B\A,  so A', B '  and C are mutually disjoint. Then submodularity 
can be expressed as 

a(C) + a(A '  U B' U C) <~ a(A'  U C) + a(B '  U C) , 

which is the natural extension of subadditivity obtained by adding the 
same disjoint event C to each term. The rationale for this case is 
similar to that given previously with a fixed event C rather than Q as a 
common background. 
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The preceding representation is more general than the submodulari- 
ty model of Fishburn (1991) in three ways. First, it relaxes the 
structure for ~ by not imposing finiteness or the closure properties of 
Boolean algebras. Second, it does not presume transitivity although it 
forbids cycles such as {A ~> B, B ~ C, C > A}, and it does not assume 
that ~> is complete. While no generality is lost if we presume A ~ A, 
the representation allows widespread incomparability between events 
in s~. Third, we have omitted two restrictions on a used in Fishburn 
(1991), namely 

a(A) = a ( B ) ~ ( a ( A \ B )  = a(B\A) or 

a(A n B) = a(A U B)) , 

a (g)  > a(B) ~ (a(A\B)  > a(S \A)  or 

a(A n B) > a(A U B)) . 

These have intuitively defensible axioms such as A > B ~ (A\B > B\A 
or A n B > A U B),  but seem less central to ambiguity than the earlier 
properties.  Since they have little effect on what follows and would 
complicate the representation, they will be suppressed. 

The next section gives axioms for (~/, ~> ) that are necessary and 
sufficient for (M, >~) to be representable. We use a finite cancellation 
condition for the finite ~¢ case, and an Archimedean axiom for the 
general case. 

Section 3 discusses the family F of all oz that represent a particular 
( J ,  >~). We note that some F contain both bounded and unbounded a 
(Example 1). When a(A0)  is fixed at 1 for a specific event A0, the 
lower bound on F thus restricted may (Example 2) or may not 
(Example 3) be a member  of F. 

Section 4 considers multifactor ambiguity with S = S 1 x . . -  x S,. 
When a is an ambiguity functional on the power set of S, its marginals 
on the n factors, defined in a natural way, are also ambiguity function- 
als. Moreover ,  when a is additive on events A 1 x A 2 x . . -  x An, 

A i C Si, as 

a(A ,  x . . "  x A , ) =  ~ fl i(A,),  / 3 , ~ 0 ,  
i=1 
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the /3 i are the marginals of o~. The axioms of Section 2 are easily 
extended to necessary and sufficient conditions for representability 
with inteffactor additivity. Finally, we sketch a n  axiomatization of the 
additive ambiguity model that extends well known axioms for additive 

conjoint measurement.  
A brief discussion concludes the paper. 

2. A X I O M S  F O R  R E P R E S E N T A B I L I T Y  

Because the models in Fishburn (1991) used A ~> B <=> a (A) />  o~(B), 
with ~/ a finite Boolean algebra, their axioms were straightforward. 
Examples include weak order (~> is transitive and complete), A >~ Q, 
A -- A ¢, (A -- 0 ,  A n B = Q) ~ B ~ A U B, and a finite cancellation 
condition for submodularity. 

The generality of our new representation for (sO, ~> ) requires new 
axioms. We use two axioms which together are necessary and sufficient 
for representability. However ,  because of their generality, they are less 
intuitively straightforward than the former axioms. 

The new axioms are a finite cancellation condition and an Archime- 
dean axiom. The Archimedean axiom is needed only when s~ is 
infinite. Its omission yields a representation in an ordered field exten- 
sion of R rather  than in R when s¢ is infinite which is similar to 
non-Archimedean or nonstandard representations in Narens (1985), 
Fishburn (1992a) and Fishburn and LaValle (1991). 

To formulate the axioms, let V be the vector space of all real valued 
functions v on s¢ for which {A E s / :  v(A)  ~ 0} is finite. Scalar multi- 
plication and addition in V are defined by (A v ) (A )=  Av(A) and 
(u + v ) (A)  = u(A)  + v (A)  when A E N and u, v E V. In addition, V 1 + 
V 2 = {v 1 + v2: v / E  Vt} when the V/ are subsets of V, 0 denotes the 
function identically zero on V, and { v, f )  is the inner product of v E V 

and f :  M---> N. 
The representat ion can be phrased entirely in terms of nonnegative 

inequalities (c,  o~ )/> 0 and positive inequalities (c,  ~ ) > 0 with every 
coefficient function c a member  of V with values in {1,0 , -1}.  For 
example,  if A, A c E M then c~(A) = a(A~), or A - A c, is equivalent to 
ol(A) - o~(A c) >1 0 and a ( A  ~) - a ( A )  >! O. And A > B is equivalent to 
c~(A) - c~(B) > 0. 
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Let  N consist of 0 plus all such c for which we wish to have 
(c ,  a ) ~> 0, and let P be the set of cs for which we want ( c, a ) > 0. 
There  is one c ~ P  for each strictly related pair A > B. Its nonzero 
values are c ( A ) =  1 and c ( B ) = - 1 .  Nonzero values for the several 

versions of c ~ N~{0} are as follows with A, B E ~¢: 

1. A ~ B ,  A C B : c ( A ) = I , c ( B ) = - I  
2. a ( A )  >I 0: c(A) = 1 
3. - a ( Q )  >~0: c(Q) = - 1  
4. o~(A) - o~(A ~) ~ 0 ,  A ~ E J :  c(A) = 1, c (A ~) = - 1  

5. submodularity, A VI B, A U B E sg, A \ B  # 0 ,  B \ A  ~ Q: 
c(A)  = c(B)  = 1, c (A VI B)  = c(A U B)  = - 1 .  

Only the nontrivial instances of submodularity are noted. The in- 
stances with A C_ B are automatic. Note also for P that the definition of 

> forbids A = B when A > B. 
Our finite cancellation condition is 

A X I O M  1. For all m E {i, 2 . . . .  } and all cj E N U P, if  c I E P then 
m E j=lcj ~ 0 .  

If o~ satisfies the representation and the hypotheses of Axiom 1 hold, 
then ( E cj, a ) = Z { ci, o~ ) > 0, so E c i # 0. Hence finite cancellation is 

necessary for representability. 

T H E O R E M  1. Suppose ~l is' finite. Then (~¢, ~ )  is representable if  

and only i f  Ax iom  1 holds. 

The sufficiency of Axiom 1 follows from well known linear separa- 
tion results for finite systems of linear inequalities, and can be seen as 
a corollary of Theorems 1 and 2 in Fishburn (1992b). To explain the 
algebraic structure for the sufficiency proof, let U* denote the convex 
cone generated by nonempty U C_ V: 

U* = Aivi: n U_ { 1 , 2 , . . . } ,  1 i > 0  and 

v ~ U  for al l i  1 .  
) 
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Suppose Axiom 1 holds. If P is empty, o~ = 0 satisfies the representa- 
tion. Suppose P is not empty. Then - N *  and P* are separated by a 
hyperplane through 0 that includes P* in an open half space de- 
termined by the hyperplane. This presumes that ~¢ is finite. A positive 
normal a to the hyperplane then gives ( v, a )  > 0 for v E P* and ( -  v, 
a ) ~ < 0 f o r  y E N * .  

To define an appropriate structure for the Archimedean axiom, we 
refer  to a subset K of V as a convex cone if K # Q ,  (u, v @ K ,  
O< A < l ) ~  Au + ( 1 - , ~ ) v ~  K, and ( v E  K, A > O ) ~  A v E  K. A con- 
vex cone K is without origin if 0 ~t K, and is Archimedean if u, 
v ~ K ~ ( ) t u -  v E K for some ~ > 0 ) .  

A X I O M  2. I f  P ~ 0 then there exists an Archimedean convex cone 
without origin in V that includes N* + P*. 

T H E O R E M  2. (~4, ~> ) is representable i f  and only i f  Ax iom 2 holds. 

Theorem 2 is a corollary of Theorem 1 in Fishburn (1992b), which is 
a linear separation theorem for possibly infinite systems of linear 
inequalities, each with a finite number of nonzero terms. Given Axiom 
2 with P not empty, the sufficiency proof  shows that there is a linear 
functional a on V for which ( v, a ) > 0 on P* and ( - v, o~ ) ~< 0 on N*. 
Axiom 2 ensures separation when a / i s  infinite, granting Zorn 's  lemma 
or the Axiom of Choice (Kelley, 1955; Fishburn, 1970). Moreover,  it 
implies finite cancellation, so that Axiom ] need not be stated explicit- 
ly for  Theorem 2. The necessity of Axiom 2 is seen by noting that if 
a : ~/----> R satisfies the representation and P ~ •, then { v E V: (v,  a ) 
> 0} is an Archimedean convex cone without origin that includes 
N* + P*. 

The situation addressed by Theorem 2 undergoes modest changes if 
we assume more for ~ or ~ .  The addition of completeness (A, 
B ~ M ~ (A >~ B or B ~ A)) strengthens the comparability part of the 
representat ion to 

A ~ B ¢:> a ( A )  >i a ( B ) ,  

the typical form for a weak order. If M is a Boolean algebra, slight 
simplifications occur in N's description. If we assume that ,~ is a 
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Boolean algebra and ~ on s¢ is a weak order, we can use axioms such 
as A ~ ~ and A ~ A ~, and replace N by its specialization for submodu- 
larity (see A8 in Fishburn, 1991). 

It appears that there is no sufficient axiomatization for ambiguity 
that is comparable in elegance to axiomatizations for extensive mea- 
surement, additive conjoint measurement, subjective probability, be- 
lief functions and other topics discussed, for example, in Herstein and 
Milnor (1953), Savage (1954), Fishburn (1970, 1988), Krantz et al. 

(1971), Roberts (1979), Suppes et al. (1989), Wakker (1989), Wong et 

al. (1991), and Wong et al. (1992). Most of these topics encourage 
bisections, inteffactor tradeoffs, additive equality comparisons and 
other features of measurement scales that have tight uniqueness 
properties. There is no obvious aspect to our conception of ambiguity 
that has comparable constructive power. It is true that submodularity 
constrains a in certain ways, but it lacks the force of additive equality 
comparisons found elsewhere. However, the belief function axiomiza- 
tion in Wong et al. (1991) suggests that a tightening of our notion of 
ambiguity which extends its submodularity property may have a simple 
axiomatization when s¢ is the family of all subsets of a finite S. 

3. U N I Q U E N E S S  C O N S I D E R A T I O N S  

The preceding remarks suggest that ambiguity functions for our basic 
representation do not have a simple scale type. However, we can 
identify some of their uniqueness structure and illustrate transforma- 
tion possibilities. 

Given (s¢, >~), let W be the set of all real valued functions on s¢, 
and let 

F = { o~ E W: a satisfies the properties that define 

representability}. 

PROPOSITION 1. I f  F and P are nonernpty then F is a convex  cone 

wi thout  origin in W. 
Proof .  Convexity and multiplication by a positive scalar preserve the 

linear inequalities that define representability. • 
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We proceed under a bit more structure. Henceforth in this section 
assume that ~ is a Boolean algebra, >~ is a weak order, and P ¢ 0 ,  
i.e., A > B for some A, B @ s4. Then the ambiguity scale type for 
F ~ Q lies somewhere between an ordinal scale with origin (A~> 
B ¢:~ a(A)>! a(B),  a ( Q ) =  0) and a ratio scale. 

Proposition 1 excludes the claim that F is Archimedean in W. Our 
first example shows that F need not be Archimedean, which must be 
the case when it contains both bounded and unbounded functionals. 

Example 1. Let S = {1, 2 , . . . }  and let ~/consist of all finite subsets of 
S and their complements. Define a on s4 by 

a(A) = min{[A I, [A~[} 

and take A~>B if and only if a(A)>~ a(B).  We have a ( O ) = 0 ,  
a(A)  >I 0 and a(A) = a(AC). To check submodularity, note first that if 
A and B are finite then [A O B[ + [A U B[ = ]A] + [B]. If both A and B 
in s¢ are infinite, the use of complementary equality gives the conclu- 
sion that a( A O B) + a( A U B) = a( A ) + a( B ). That is, 

a(A  n B) + a (A  U B) = a((A n B) ~) + a((A U B) ~) 

= [A c U Be[ + [A ~ n B~[ 

= IA~[ + IBm[ 

= a ( J )  + a ( B ) .  

Suppose A is finite and B is infinite. Then a(A N B ) +  a(A U B)=  
[ A N B [  + ](AUB)C[ = [ANB[  + [A c n B c [ ~ ] A ]  + [BC[ = a(A)+  
a(B) .  Hence a is submodular, so a ~ F. 

In contrast to unbounded a,  define bounded/3 on s¢ by 

/3(A) = a(A) / [a(A)  + 1]. 

We claim that / 3 ~ F .  Clearly, A~BC~f i (A)>- /3 (B) ,  fi(Q3)=0, 
/3(A)/> 0 and/3(A) =/3(A¢). To check submodularity, assume with no 
loss of generality that A\B and B\A are nonempty. Suppose A and B 
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are finite, and let a = I A\BI ,  b = [B',A[ and c = I A n B[. Submodulari-  
ty then holds if and only if 

c a + b + c  a + c  b + c  - - +  < ~ - - +  
c + l  a + b + c + l  a + c + l  b + c + l  " 

This reduces to a + b + 2c ~< 2(a + b + 2c + 1), so submodulari ty holds 
when A and B are finite. If  A and B are infinite, complementat ion 

gives the same conclusion. Suppose finally that A is finite and B is 
infinite. Since a ( Z  U B) = I(Z U B)~[ = [Z c n B~[, submodulari ty re- 

quires 

IAABI IACA BCl [AI IB¢[ 
+ 4 - - + - -  

[ A n  B[ + 1 [A c N BC[ + 1 [A[ + 1 IBm[ + 1 

which is true since x / (x  + 1) increases in x >10. 

Hence  /3 E F, so F contains bounded as well as unbounded func- 

tions. 
The next example shows how submodulari ty can confine F to an 

easily described family of concave functions. 

Example 2. Let  S = [0, 2] and let ~ consist of all Lebesgue measurable  

subsets of  S. Define a by 

a ( A )  : min{/x(A),  tx(AC)}, 

(/x denotes Lebesgue measure) 

and take A >~ B 4:~ a ( A )  >~ a (B) .  The ambiguity function is maximized 

at 1 w h e n / z ( A )  = 1. We focus on the normalized family 

F ~ = { / 3 E F :  / 3 ( A ) = l  w h e n # ( A ) = l }  

and wr i t e /3 (y  ) for /3(A)  when u (A)  = y. Thus a ( 7 )  = min{y, 2 - y}.  
We say tha t /3  is concave if 

0~<y - 6 ~<7 + 6 ~< 1 ~ / 3 ( 7 )  ~> [/3(y - 6 ) + / 3 ( 7  + 6 ) ] / 2 .  

It  is easily seen that /3 E F 1 if and only i f /3(0)  = 0, /3(1) = 1, /3 is 
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strictly increasing and concave on [0, 1], and 13(7)= 13(2- y)  when 
1 ~< 3'-<-<2. The properties other than concavity characterize repre- 
sentability apart from submodularity. Submodularity implies 

2/3(7)/>]3(71)+]3(3,2) when O ~ < y ~ < y < y 2 ~ < l ,  

2'Y= yl +'Y2 , 

by choosing A and  B with / , (A)= /x(B)  = Y, /x(A N B ) = 7 t  and 
/x(A tO B) = 3'2- Hence submodularity implies concavity in the present 
example. Conversely, if 13 satisfies the other properties and submodu- 
larity fails, then 13 will not be concave. 

The functions in F 1 are continuous on (0, 2) but can be discontinu- 
ous at the end points of [0, 2], so F is not Archimedean. Also, since 

(O~<y ~<1, 13 E F ~ ) ~  13(7)> y =  ¢~(Y), 

a is, in a manner of speaking, the least concave member of F~. That is, 

a(A)=min{13(A):fiEF~} forall A E a t ,  

so the lower bound of F1 is in F 1. 
Our final example shows that the lower bound of F 1 can be well 

outside of F1. 

Example 3. Let ~ be the power set of {1, 2, 3, 4}. Omitting braces for 
subsets, let F 1 be the family of all ]3: ~/-+ [0, 1] for which 

with 

t3=0  for Q, 1234 
13=a for 3, 4, 123,124 
13=b for 12, 34 
13=c for 1, 2, 134,234 
13=1 for 13, 23, 14, 24 

O < a < b < c < l  
l ~ a + c ~ l + b  
b~2a.  
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Assume that ~ is preserved by the/3 values. Along with ordering, the 

inequality restrictions are precisely those needed for submodularity.  In 
particular 

(A = 123, B = 1 3 4 ) ~ 1 ~ < a  + c 

(A = 13, B = 3 4 ) ~ a  + c ~ < 1 +  b 
(A = 123, B = 1 2 4 ) ~ b  ~<2a. 

With max /3 (A)  fixed at 1, let/3o(A) = inf{/3(A) : /3 E F~}. Then 

/3o (1 )=112 ,  /30(3)=0 and t3o(13)=1 

so submodulari ty fails decisively for /3  0. 

4. MULTIFACTOR AMBIGUITY 

We conclude our technical analysis of ambiguity with remarks  on 
situations characterized by multiple sources of ambiguity. For simplici- 

ty, we assume that the state space S is the Cartesian product  S 1 x . . .  
x S n of  n i> 2 nonempty  factor sets, and that M is the family of all 
subsets of  S. As done previously, a real valued function on a Boolean 

algebra will be called an ambiguity functional if it is nonnegative,  
vanishes at Q,  satisfies complementary  equality, and is submodular .  

When A E  M is the product  of subsets of the factors, say A = 

A 1 x . . -  x An, we write a ( A  1 . . . .  , A n )  in place of a ( A  1 x - - .  x 
An).  Let  M ° denote  the family of  all nonempty subsets of S i. The set of  
all (A 1 . . . .  , An)  which correspond to events in d is d ° x - - -  x d ° 
in union with { ( 0  . . . .  , ~3)}, where the n-tuple of Os corresponds to 

the empty  event. Note  that if A z # Q5 then (Q, A 2, • • • ,  A n) corre- 
sponds to nothing in d .  

Our  remarks  on ambiguity for multifactor situations that go beyond 
those of preceding sections focus on the notion of marginal ambiguity. 
Let  M i = s¢/° U {0}.  With an obvious bow to marginal probability, we 

define a i on d i f rom an ambiguity functional a on d by 

a,(A,)=a(S~,...,S,_I,A,,S~+,,...,Sn) for A,(EM ° 
, ~ ( Q )  = O. 

The marginal functions inherit characteristics of their parent.  
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P R O P O S I T I O N  2. Suppose  a on s¢ is an ambigui ty  funct ional .  Then 

Ol i o n  ~ i  is an ambigui ty  func t iona l  f o r  i = 1 , . . .  , n. 

Proof .  Given a of the hypothesis, as(Q ) = 0 ,  as(A~)>~O for all 
A s E M°i, a s (As )  = o~i(A~) because ai(Si )  = 0 and 

c (S~x " - - x A i x  " "  x Sn)C=Sl x . . .  x A  s x . . .  x S  n 

when A i ~ { Q  , Si} , and a i obviously inherits submodutarity from a. 

Given ~ on s¢, it is natural to define ~ s  on .d ° by 

A i ~.~ iBi  if (S 1 . . . .  , A i, • • • , S , )  

> ~ ( & , . . .  , B s , . . .  , S , ) .  

If ~> is a weak order,  so is ~> s. As in conjoint measurement and other 
multifactor topics, we say that the factors are independent  if, for all i 
and all A s ,  Bi ,  C i E J °  

( G  . . . .  , A , ,  Cs+  . . . .  , C . )  

>~ ( C 1 , . . . ,  Ci_.l, B~, C s + l , . . . ,  C,~)¢:~ A i  >~ ~B s . 

Higher order  independence concepts are defined similarly when sub- 
sets of two or more factors act as a unit. 

Independence among factors suggests that if several A s are highly 
ambiguous then A = ( A 1 , . . . ,  An) as a whole will be highly ambigu- 
ous, and if all Ai are relatively unambiguous then A will have low 
ambiguity. Indeed,  our independence conditions are necessary for the 
additive form 

a(A,,...,A~)=~ fl,(As) 
i = 1  

in which each factor contributes additively to total ambiguity. Here  
each /3  i maps ~ o  into N, and it is natural to take /3  i >-0 for all i and 
extend the /3  s to the empty set by defining/3s(O ) = 0. The relationship 
of such/3 s to our  marginal ambiguity functions is straightforward. 
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P R O P O S I T I O N  3. S u p p o s e  a is an a m b i g u i t y  f u n c t i o n  that  is addi t ive  

o n  s f  ° x . . .  x sg ° as a ( A l ,  . . . , A , )  = E [3i(A~) wi th  [3~>~O f o r  each  

i. D e f i n e  [3i(Q ) = 0 f o r  al l  i. Then  [3 i is ident ical  to the  m a r g i n a l  

f u n c t i o n a l  a i f o r  each i. 

P r o o f .  Assume the hypotheses. Nonnegativity and 0 =  a ( S ) =  

Ef l i (S i )  imply ~i (S i )  = 0 for all i. Then, for A~ E s¢ °, 

a , ( A , )  = a ( S ~ ,  . . . , S i_ l ,  A , ,  S,+~, . . . , S , )  

= a ( S ~ , . . . ,  A , , . . . ,  S , ) -  E ~ j ( S j )  
j~ i  

= f 3 , ( A i ) .  

Since/3~(Q) = ai(O ) = 0 by definition,/3 i = a i. 

It should be noted that if the additive form holds and the ai or fl~ are 
given, we can obtain a only for 0 and events in s /°  x . . .  x s~ °. 
Although the additive form does not apply to the two-state event 

A = { ( s  1 . . . .  , s n ) , ( t l , . . . , t n )  } , s i ~ : t  i f o r s o m e i ,  

that form and submodularity give 

a ( A ) < ~  a ( { ( s l , . . . ,  s , )})  + a ( { ( t l , . . . ,  tn)}) 

= + 

i = 1  

More generally, for distinct s j C S, additivity and submodularity imply 

i ~ i  j = l  

An extension of the axiomatization in Section 2 suffices for the 
additive ambiguity representation. Assume the structure of the open- 
ing paragraph of the present section and define P for strict ambiguity 
comparisons as before.  Join to N coefficient functions for additivity. 
That  is, for each (A 1 . . . .  , An) for which at least two A i are proper  
subsets of their Si, add to N c and c' with nonzero values 
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c ( A ~ , . . . ,  A,,)  

= 1 ,  c ( S 1 , . . . , A i  . . . . .  S . ) = - I  when A~CS~;  

c ' ( A 1 , . . . ,  A , )  

= - t ,  c ' ( S 1 , . . . , A i , . . . , S n ) = l  when A i C S  i.  

The  t>0 linear inequalities for these two amount  to a ( A 1 , . . . ,  A , )  = 
Z a i (Ai )  , the desired equality in view of Proposition 3. The augmented 
N and the original P are used in Axiom 2 to imply an a that represents 

( d ,  ~>) and is additive over  factors. The existence of such an a is 
guaranteed by Theorem 1 in Fishburn (1992b). 

An additive ambiguity representat ion can have a tight uniqueness 
structure. Suppose each a i codomain is a nondegenerate  interval. The 
ai are then unique up to multiplication by a positive scalar. Additivity 
implies the same thing for the a values of all events in s4 ° x • • • x s / ° .  

If, in addition, every A @.~ has an (A'  1 , . . . ,  A ' )  in sq~ x . . .  x A ° 
for which ( A ' ~ , . . . ,  A ' ) ~  A, then a as a whole is unique up to 
multiplication by a positive scalar, or has a ratio scale. 

One can also approach the additive ambiguity representat ion f rom 
the conjoint measurement  perspective (Fishburn, 1970; Krantz et al. 
1971; Wakker ,  1989). I sketch this without giving all the structural 
details. 

We begin with weak order,  A ~> S, and additivity and Archimedean 
axioms to obtain fii: ~¢o_> ~ for i = 1 , . . .  , n such that [3 i >1 O, fl,(Si) = 
0 and 

( A l , . . . ,  A , , ) > ( B ~  . . . .  , Bn)¢22 ~ I~i(Ai)) ~ ~i(Bi). 
i-1 i-1 

With fixed origins for the fl~, axioms of preceding references imply that 
the/3~ are unique up to multiplication by a positive scalar. Assume this. 
Define a on s / °  x . . .  × s / °  by 

a ( A ,  . . . . .  A, ,)  = E ~i(Ai)  . 

Assume further that A ~ A c and for each A there is an (A ' I , . . .  , A ' )  in 
s4~ x - . -  x s4 ° such that A -  ( A ~ , . . . ,  A:) .  Then extend a uniquely 
to all of s4 by taking a ( A )  = a(A~ . . . . .  A ' ) .  
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This covers everything in the additive ambiguity representation 
except submodularity. In view of additivity and the solution axiom 
A - - ( A ' , , . . . ,  A ' ) ,  when A \ B  C-fg and B\A: / :O,  submodularity re- 
quires 

E #i(Ei) + E #i(Fi) <~ E #i(ci)  + E #i(Di) 

whenever 

A ~ ( C 1 , . . .  , Q )  
B ~ ( D 1 , . . . ,  D , )  

A C1 B ~ ( E , ,  . . . , E~) 
A U B ~ ( F ~ ,  . . . , F,) . 

We can approach this axiomatically by a bisection or equal-spacing 
operation for each factor. For each i let Z ~  ~(X~, Y~) for X i, Yi, 

° f o r j ~ i  Z~ E ~ o  mean that there are p and q in the product of the ~ j  
such that 

(Xi, P) ~ (Zi, q) 

(Z~, p) ~ (Y~, q) .  

This implies that [3i(Zi) = [fii(X~) + 13i(Yi)]/2. Assume that, given X~ 
and Yi, there are Z~, p and q that satisfy the two - expressions. Then, 
for the preceding instance of submodularity, we have G i, H i E .;/0 for 
each i such that 

G~-~ ~(Ci, Di) and Hi ~ ~(E~, Fi). 

In terms of the fii these translate into 

2 Z /~ i (G i )  = ~] fii(Ci) + ~'~ fii(D~) 

2 • fli(Hi) = ~] fi~(E~) + ~'~ fi;(F~). 

Hence  the desired inequality for submodularity is tantamount to 
(G1, .  • • ,  C°)  ( H , , . . . ,  H , ) .  
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In summary, our axiom for submodularity in the additive conjoint 
approach is 

(A ~ (C1, . . . , Cn) , B ~ (D~ . . . .  , D, ) ,  G~ ~ ~(C~, D~) 

for all i, 

A N B ~ ( E ~ , . . . ,  E,), A U B ~ ( F ~ , . . . ,  Fn), 

Hi = 5 )  

for a l l i ) ~ ( G ~ , . . . ,  Gn)~ (H~  . . . .  , Hn). 

When this is adjoined to preceding axioms with suitable structural 
assumptions, we obtain conditions that are sufficient for the additive 
ambiguity representation With a unique up to multiplication by a 
positive constant. By Proposition 3, the nonnegative functions for 
factors in the additive part of the representation are the marginals of 

5. D I S C U S S I O N  

This paper continues a study (Fishburn, 1991) of event ambiguity as a 
primitive concept. Earlier axioms for finite event spaces were general- 
ized to conditions on a comparative ambiguity relation on an arbitrary 
event space which imply the existence of a real valued function that 
preserves the ambiguity relationships and satisfies complementary 
equality and submodularity. We investigated uniqueness properties of 
such functions, then considered marginal ambiguity and additive de- 
composability over factors when the basic state space is the Cartesian 
product of n other factors. 

The work completed here raises questions that may interest others. 
The most basic is whether ambiguity really merits consideration as a 
primitive apart from more familiar concepts like comparative prob- 
ability and choice. Another  is the extent to which ambiguity can be 
investigated empirically without reference to likelihood or choice. 

The present primitive approach has proposed axioms for compara- 
tive ambiguity that seem intuitively reasonable. Do some of them have 
unforeseen shortcomings? Are there other viable candidates for am- 
biguity axioms thus far overlooked? 
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Severa l  t echn ica l  ma t t e r s  might  be pursued .  O n e  is to  cha rac t e r i ze  

m o r e  c o m p l e t e l y  the  fami ly  o f  ambigu i ty  func t iona ls  tha t  r e p r e s e n t  a 

qua l i t a t ive  amb igu i ty  s t ruc ture .  A n o t h e r  asks w h e t h e r  the re  is a less 

abs t r ac t  set of  ax ioms  than  those  in Sect ion  2 for  r ep re sen t ab i l i t y ,  

p e r h a p s  u n d e r  w e a k  o r d e r  and  a r ich s t ruc ture  for  the  even t  space  in 

the  inf in i te -events  case.  
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