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Abstract

Hilberg’s conjecture is a statement that the mutual information be-
tween two adjacent blocks of text in natural language scales as nβ , where
n is the block length. Previously, this hypothesis has been linked to Her-
dan’s law on the levels of word frequency and of text semantics. Thus it
is worth a direct empirical test. In the present paper, Hilberg’s conjecture
is tested for a selection of English prose using the Lempel-Ziv algorithm.
An upper bound for the exponent β is found to be 0.949.
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1 Introduction

Texts typically produced by humans diverge from both pure randomness and
simple determinism. If we investigate predictability of such texts borrowing
tools from information theory, we should observe some particular behavior of
their optimal compression rate. Namely, the compression rate as a function of
the text length should neither tend very fast to zero (the case of determinism)
nor tend very fast to a constant greater than zero (the case of pure randomness).
Concurring with this intuition, German telecommunications engineer Wolfgang
Hilberg [7] supposed that the optimal compression rate of a text in natural
language scales as n−1+β , where n is the length of the text and β is close to 0.5.
Hilberg’s conjecture was motivated largely rationally but was partly based on
an extrapolation of Shannon’s seminal experimental data [10], which contained
the estimates of conditional entropy for blocks of n ≤ 100 characters.

As can be easily shown, Hilberg’s conjecture implies that mutual information
between two adjacent text blocks of length n is proportional to nβ . Using more
involved mathematical modeling, the latter property can be linked with the
distribution of words appearing in texts and the distribution of facts described
by texts. First, Dębowski [4] has proved a theorem by which the power-law
growth of mutual information implies that the number of distinct set phrases
(words) in a text of length n roughly exceeds nβ divided by a logarithmic term,
cf. Dębowski [5]. The claim of this theorem is actually observed and known
as Herdan’s law [6]. Second, Dębowski [4] has proved a proposition which says
that the power-law growth of mutual information is obeyed if a text of length
n describes more than nβ independent facts in a repetitive fashion. Hence
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Hilberg’s conjecture may be linked to power-laws on the levels of word frequency
and of text semantics.

In view of these mathematical results, Hilberg’s conjecture deserves experi-
mental validation. Whereas it seems dubious that the optimal compression rate
or the conditional entropy tends to zero for (con)text lengths tending to infinity,
it is plausible that the mutual information between large adjacent text blocks
grows according to a power law. Ever since Shannon the entropy of natural lan-
guage has been the object of often scientific investigation but the exact scaling
of the compression rate is a little investigated issue. Therefore, we decided to
devote the present paper to the specific topic of verifying Hilberg’s conjecture.
The findings of this paper have a preliminary character.

Reviewing earlier research, we first mention Cover and King [2], who found
an estimate of the asymptotic conditional entropy of English texts as 1.25 bpc
(bits per character). This estimate was obtained using human subjects who
were instructed to gamble on consecutive letters of the text and an estimate
of entropy was computed from the accumulated capital. Modern compression
algorithms compare with these estimates favorably. PPM (prediction by partial
matching), being one of the best-performing compression algorithms, achieves
the compression rate of 1.46 bpc for selected English texts [11]. Similar studies
have been done for languages other than English, cf. e.g. Behr et al. [1], and for
other compression algorithms, cf. Mahoney [9].

A graph depicting how PPM’s compression rate depends on the amount
of training text is also given by Teahan and Cleary [11]. We are looking for
a bit different graphs, namely, how the compression rate and the block mutual
information depend on the amount of compressed text. For this reason we
have decided to perform an independent compression experiment. In any such
experiment there are two variables to be fixed. The first one is the compression
algorithm, the second is the selection of texts.

For simplicity, we evaluate the compression rate and the mutual information
using the Lempel-Ziv code [12], which is the simplest of universal codes. Uni-
versal codes are compression algorithms which asymptotically get the optimal
compression rate for stationary sources. It can be shown that the estimates of
mutual information given by universal codes are greater than the true mutual
information. Moreover, the difference between the estimate of mutual informa-
tion and the true mutual information is the smaller, the better the compression
rate is. Hence we may use a universal code to upper bound the true mutual
information.

Another important issue is what is the range of texts for which Hilberg’s
conjecture can be reasonably verified. One can consider either single (i.e., non-
concatenated) texts produced by single authors or concatenations of such texts
(i.e., corpora). We have decided to consider first only single-author texts since
the compression rate for concatenated texts may depend on the specific choice
of the text collection. Thus we consider a selection of single-author texts in
English downloaded from the project Gutenberg.

In a nutshell, the findings of this paper can be thus described. In the range
of text lengths n ∈ (103, 107) characters, we observe a power-law relationship
for both the compression rate and the mutual information computed for the
Lempel-Ziv code. The fitted exponent for the compression rate is close to β ≈
0.949. This observation does not exclude Hilberg’s conjecture with a very high
exponent β. However, if we used a better universal code then we might obtain
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a tighter bound. For this reason it is advisable to repeat our experiment using
better codes than the Lempel-Ziv, such as the PPM code.

The subsequent organization of the paper is as follows. In Section 2, we
introduce some necessary concepts from information theory. In Section 3, we
expose Hilberg’s conjecture. In Section 4, we reformulate this conjecture using
mutual information. In Section 5, we discuss the experiment. The paper is
concluded in Section 6.

2 A bit of information theory

We first give a brief primer on information theory, cf. Cover and Thomas [3].
The fundamental concept of information theory is the entropy of a random vari-
able. For a random variable Xn

1 = (X1, X2, ..., Xn), where Xi are consecutive
characters of a random text, the entropy is defined as

H(Xn
1 ) = −

∑
xn
1

P (Xn
1 = xn1 ) logP (X

n
1 = xn1 ). (1)

If we have a uniquely decodable code C for variable Xn
1 , then the expectation

of its length |C(Xn
1 )| cannot be smaller than the entropy, i.e.,∑

xn
1

P (Xn
1 = xn1 ) |C(xn1 )| ≥ H(Xn

1 ). (2)

It can be shown that there exist a uniquely decodable code C with lengths
|C(xn1 )| = d− logP (Xn

1 = xn1 )e, called the Shannon-Fano code. For this code
we obtain ∑

xn
1

P (Xn
1 = xn1 ) |C(xn1 )| ≤ H(Xn

1 ) + 1. (3)

The length of the Shannon-Fano code d− logP (Xn
1 = xn1 )e could be considered

the information content of an individual text xn1 .
However, we cannot evaluate the Shannon-Fano code if the proper probabil-

ity distribution P is not specified or does not exist. As noticed by Kolmogorov
[8], this may be well the case of natural language. In such a case, Kolmogorov
proposed to define the information content of an individual text xn1 as the length
of the shortest program for a simple universal computer (a Turing machine)
that makes the computer produce xn1 on its output. This quantity is called Kol-
mogorov complexity K(xn1 ). For any computable code C there exists a constant
c such that

K(xn1 ) ≤ |C(xn1 )|+ c. (4)

Since Kolmogorov complexity is itself a length of a computable code, we obtain∑
xn
1

P (Xn
1 = xn1 )K(xn1 ) ≥ H(Xn

1 ) (5)

for a random variableXn
1 on a definite probability space. In case of a computable

probability distribution the Shannon-Fano code is also computable so, from (3)
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and (4), we obtain∑
xn
1

P (Xn
1 = xn1 )K(xn1 ) ≤ H(Xn

1 ) + c+ 1. (6)

Hence the expectation of Kolmogorov complexity for computable distributions
is close to entropy. In contrast, the difference between Kolmogorov complexity
and entropy can be arbitrarily large for noncomputable distributions.

The problem about Kolmogorov complexity is, however, that it is not com-
putable. Therefore we will rather take a middle path to measuring information
content of individual texts, which is universal coding. A universal code is a
uniquely decodable computable code C which for any stationary stochastic pro-
cess (X1, X2, ...) achieves the optimal compression rate

lim
n→∞

1

n

∑
xn
1

P (Xn
1 = xn1 ) |C(xn1 )| = h, (7)

where the asymptotic entropy rate is

h = lim
n→∞

1

n
H(Xn

1 ). (8)

Some example of a universal code is the Lempel-Ziv code [12]. Subsequently,
we will measure the information content of an individual text as the length of
this code.

3 Flavors of Hilberg’s conjecture

We are now in a position to introduce Hilberg’s conjecture. The original form
of this hypothesis deals with conditional entropy

H(Xn|Xn−1
1 ) = −

∑
xn
1

P (Xn
1 = xn1 ) logP (Xn = xn|Xn−1

1 = xn−11 ). (9)

Hilberg replotted Shannon’s (1951) estimates of conditional entropy for English
in the double logarithmic scale and observed an approximate power-law rela-
tionship

H(Xn|Xn−1
1 ) ∝ n−1+β , (10)

where β ≈ 0.5 and n ≤ 100. When extrapolated to arbitrary n, this relationship
implies

H(Xn
1 ) =

n∑
m=1

H(Xm|Xm−1
1 ) ∝

∫ n

0

m−1+βdm ∝ nβ . (11)

Hence we obtain a power law for the entropy rate

H(Xn
1 )

n
∝ n−1+β . (12)

Relationship (12) is the original Hilberg conjecture.
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The original Hilberg conjecture is a bit far-fetched. Having derived (12),
Hilberg conjectured that the entropy rate (8) of natural language is zero. This
proposition seems unrealistic since it implies asymptotic determinism of human
utterances. Thus it may be better to assume

H(Xn
1 )

n
≈ An−1+β + h, (13)

where constant h can be positive.
Striving for even more realism, we notice that there is no good probability

distribution for texts in natural language. Hence, it seems more correct to
speak of Kolmogorov complexity K(xn1 ) of an individual text xn1 rather than
the entropy H(Xn

1 ) of a random text Xn
1 . Thus another plausible modification

of Hilberg’s conjecture reads

K(xn1 )

n
≈ An−1+β + h. (14)

This proposition may be called a relaxed Hilberg conjecture for individual texts.
In the following, we will try to check whether (14) applies to texts in natural
language. Prior to this, we will however discuss some bounds for mutual infor-
mation that arise for universal codes.

4 Bounds for mutual information

It is insightful to rephrase Hilberg’s conjecture using mutual information. There
are three kinds of mutual information that are important for our considerations.
First, the Shannon mutual information between random blocks is defined as

IH(Xn
1 ;X

2n
n+1) = H(Xn

1 ) +H(X2n
n+1)−H(X2n

1 ). (15)

Second, the algorithmic mutual information between individual texts is defined
as

IK(xn1 ;x
2n
n+1) = K(xn1 ) +K(x2nn+1)−K(x2n1 ). (16)

Third, the mutual information based on a universal code C is

IC(x
n
1 ;x

2n
n+1) = |C(xn1 )|+

∣∣C(x2nn+1)
∣∣− ∣∣C(x2n1 )

∣∣ . (17)

The nice feature of mutual information is that when we rephrase the mod-
ified Hilberg conjecture using this concept then the linear terms will cancel.
Assuming that H(Xn

1 ) ≈ H(X2n
n+1), for the conjecture (13) we have

IH(Xn
1 ;X

2n
n+1) ≈ 2Anβ + 2hn−A(2n)β − 2hn ∝ nβ . (18)

Similarly, supposing that K(xn1 ) ≈ K(x2nn+1), for the conjecture (14) we obtain

IK(xn1 ;x
2n
n+1) ≈ 2Anβ + 2hn−A(2n)β − 2hn ∝ nβ . (19)

In our application, we are going to estimate the algorithmic mutual infor-
mation IK(xn1 ;x

2n
n+1) using the code-based mutual information IC(xn1 ;x

2n
n+1). It

is important to know what an error is that we make by such an approximation.
In determining this error the following proposition is helpful:
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Lemma 1 (4) Let a function G satisfy limk→∞G(k)/k = 0 and G(n) ≥ 0 for
all n. Then 2G(n)−G(2n) ≥ 0 for infinitely many n.

A nice feature of universal codes, which follows from the above lemma, is
that they yield an upper bound for the Shannon mutual information. Consider
a stationary process (X1, X2, ...). By Lemma 1, from (2) and (7), we obtain∑

xn
1

P (X2n
1 = x2n1 )IC(x

n
1 ;x

2n
n+1) ≥ IH(Xn

1 ;X
2n
n+1) (20)

for infinitely many n. For the algorithmic mutual information, we can obtain
a similar statement. Consider an infinite individual text (x1, x2, ...). Suppose
plausibly that |C(xn1 )| ≈

∣∣C(x2nn+1)
∣∣, K(xn1 ) ≈ K(x2nn+1), and

lim
n→∞

1

n
|C(xn1 )| = lim

n→∞

1

n
K(xn1 ). (21)

Then by Lemma 1, from (4) we obtain

IC(x
n
1 ;x

2n
1 ) + c ≥ IK(xn1 ;x

2n
1 ) (22)

for infinitely many n. Hence when IC(x
n
1 ;x

2n
1 ) obeys a power law with a given

exponent then IK(xn1 ;x
2n
1 ) may only obey a power law with a smaller exponent.

The bound given in (22) is the tighter, the better the code compresses the
data. Suppose that we have a code D that satisfies |D(xn1 )| ≤ |C(xn1 )| and the
analogue of (21). Then by Lemma 1, we have

ID(x
n
1 ;x

2n
1 ) ≤ IC(xn1 ;x2n1 ) (23)

for infinitely many n. Hence if we look for a good estimate of algorithmic mutual
information, we should use the shortest code available.

5 Empirical findings

For the sake of testing Hilberg’s conjecture, we have compressed 10 texts written
in English by single authors. The texts were downloaded from the Project
Gutenberg1 and are listed in Table 1. We have deleted the preambles of the
text files and reduced the alphabet to 27 symbols (26 capital letters and a space),
as it has been usually done in previous publication concerning the entropy of
English. Subsequently, we have measured the length of the Lempel-Ziv code for
exponentially growing initial text blocks.

The dependence of the compression rate on the block length is given in
Figure 1, whereas the dependence of the mutual information on the double
block length is given in Figure 2. Using the nonlinear least-squares (NLLS)
Marquardt-Levenberg algorithm, we have fitted the following simple model for
the compression rate:

|C(xn1 )|
n

≈ 6.22n−1+0.949 [bpc]. (24)

1http://www.gutenberg.org/
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Title Author
First Folio/35 Plays W. Shakespeare
Critical & Historical Essays T. B. Macaulay
The Complete Memoirs J. Casanova
Memoirs of Comtesse du Barry E. Lamothe-Langon
The Descent of Man C. Darwin
Gulliver’s Travels J. Swift
The Mysterious Island J. Verne
Mark Twain, a Biography A. B. Paine
The Journal to Stella J. Swift
Life of William Carey G. Smith

Table 1: The selection of compressed texts.

From formula (24), we derive mutual information

IC(x
n
1 ;x

2n
n+1) ≈ 0.432n0.949 [bits]. (25)

In Figures 1 and 2, we can observe that both models fit the data very well.
It may be somewhat surprising that model (24) fits so well although it con-

tains no constant term h > 0 supposed in conjecture (14). We know, however,
from independent studies that the asymptotic entropy rate h for English is less
than 1.25 bpc [2]. In contrast, the lowest compression rate that we observe in
Figures 1 is about 3.0 bpc. Thus a constant term of the order of 1.25 bpc cannot
be reliably identified in the considered data.

Relationships (22) and (25) suggest that this bound holds for the algorithmic
mutual information of texts in English:

IK(xn1 ;x
2n
n+1) ≤ 0.432n0.949 + c [bits]. (26)

The above relationship does not exclude Hilberg’s conjecture with a very high
exponent β.

6 Conclusion

In this paper, we have first presented an approach how to understand Hilberg’s
conjecture using Kolmogorov complexity and algorithmic mutual information.
Putting Hilberg’s conjecture in this setting escapes the problem of deciding what
is an appropriate probability distribution for human language production. In
the second turn, we have tried to verify Hilberg’s conjecture using the Lempel-
Ziv code. Our findings do not exclude Hilberg’s conjecture with an exponent
β close to 1. However, if we used a better universal code than the Lempel-Ziv
code, such as the PPM code, then we might obtain a tighter bound for the
exponent. We leave this problem for the future research.
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