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Abstract We treat the problem of reasoning with ambiguous propositions.
Even though ambiguity is obviously problematic for reasoning, it is no less ob-
vious that ambiguous propositions entail other propositions (both ambiguous
and unambiguous), and are entailed by other propositions. This article gives
a formal analysis of the underlying mechanisms, both from an algebraic and a
logical point of view. The main result can be summarized as follows: sound (and
complete) reasoning with ambiguity requires a distinction between equivalence
on the one and congruence on the other side: the fact that α entails β does
not imply β can be substituted for α in all contexts preserving truth. With-
out this distinction, we will always run into paradoxical results. We present
the (cut-free) sequent calculus ALcf , which we conjecture implements sound
and complete propositional reasoning with ambiguity, and provide it with a
language-theoretic semantics, where letters represent unambiguous meanings
and concatenation represents ambiguity.
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1 Introduction

This article gives an extensive treatment of reasoning with ambiguity, more
precisely with ambiguous propositions. We approach the problem from an
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algebraic and a logical perspective and show some interesting surprising results
on both ends, which lead up to some interesting philosophical questions, which
we address in a preliminary fashion. The term linguistic ambiguity roughly
designates cases where expressions of natural language give rise to two or more,
though finitely many, sharply distinguished meanings. We leave it for now
with this brief and intuitive definition,1 since we will be rather explicit on its
properties later on, and we rely on the fact that even non-linguists have very
stable intuitions on what ambiguity is (though the distinction from vagueness
and polysemy probably requires some additional knowledge). In linguistics,
ambiguity is usually considered to be a very heterogeneous phenomenon, and
this is certainly true as far as it can arise from many different sources: from the
lexicon, from syntactic derivations, from semantic composition as in quantifier
scope ambiguity (this is sometimes reduced to syntax), from literal versus
collocational meanings, and probably even more sources such as metaphors
etc. Nonetheless, there is something common to all these phenomena, hence it
makes sense to think of ambiguity as one single phenomenon.

We have recently argued (see Wurm and Lichte, 2016) that the best solu-
tion is to treat ambiguity consistently as part of semantics, because there are
some properties which are consistently present regardless of its source. The
advantage of this unified treatment is that having ambiguity in semantics, we
can use all semantic resources in order to resolve it and draw inferences from
it (we will be more explicit below). It is a remarkable fact that even though
ambiguity is a pervasive phenomenon in natural language, it usually does not
seem to pose any problems for speakers: in some cases, we do not even notice
ambiguity (as in (1)), whereas in other cases, we can also perfectly reason with
and draw inferences from ambiguous information (as in (2)):

(1) Time flies like an arrow.

(2) The first thing that strikes a stranger in New York is a big

car.

In (1), uttered in an appropriate situation to a non-linguist, hardly any lis-
tener would think about the mysterious time flies. Conversely, in (2) everyone
notices the ambiguity, but still without any explicit reasoning, the conclusion
that in New York there is at least one big car (and probably many more) seems
immediate to us. Hence we can easily draw inferences from ambiguous state-
ments. This is in line with psycholinguistic findings that “inference is easy,
articulation is costly” (see Piantadosi et al., 2011), and hence ambiguity is to
be expected in a language shaped by convenience. This entails two things for
us:

1. We should rather not disambiguate (i.e. decide on a reading) before we
start constructing semantics, as otherwise at least one reading remains
unavailable, and soundness of inferences cannot be verified.

1 But importantly, we restrict our attention to what is conventionally called ambiguity
in linguistics. There is a much broader usage in other communities, see Lolli (2017) for an
overview.
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2. Hence we have to be able to construct something like “ambiguous mean-
ings”, and we have to be able to reason with them.

As regards 1., we have to add that from a psychological point of view, it is often
plausible to assume that we disambiguate before we interpret a statement, in
the sense that even though a sentence is ambiguous between m1 and m2, only
one of the meanings is constructed or even perceived (see (1)). However, from
a logical point of view this prevents sound reasoning, and our goal here is to
provide a theory for sound (and complete) reasoning with ambiguity, not a
psychological theory. We will investigate thoroughly the matter of reasoning
with ambiguity, which will lead to many results which are surprising from a
mathematical and interesting from a philosophical point of view.

In Section 2, we will lay the conceptual foundations and explain what we
mean by ambiguity and what are, in our view, its main properties. The rest
of the paper is devoted to a formal approach to reasoning with ambiguity; we
let the ambiguity between two meanings m1,m2 be denoted by m1‖m2.

In Section 3, we will try to tackle the problem algebraically, by introduc-
ing three classes of algebras, all being extensions of Boolean algebras with a
binary operator ‖. These are strong and weak ambiguous algebras and
universal distribution algebras (denoted by SAA, WAA and UDA).
WAA has been introduced in Wurm and Lichte (2016), and UDA in Wurm
(2017). These algebras have, at first glance, innocuous axioms which imple-
ment unquestionable properties of ambiguity. However, we will show that in
all of them strongly counterintuitive properties hold, and moreover, we show
that the equational theories of these three classes actually coincide. These re-
sults are surprising and interesting from an algebraic point of view, and leave
us with the main paradox we have pointed out already in earlier publications
(Wurm and Lichte, 2016): how can properties, which are intuitively correct be-
yond doubt, lead to properties which are intuitively incorrect beyond doubt?
There is one obvious way out, which consists in using partial algebras. This
however does not provide us with satisfying results either, hence we only men-
tion this possibility and show some rather negative results. Our solution is to
say: algebra itself is the problem, more precisely, the fact that we use a con-
gruence which disregards the syntactic form of terms. This problem obviously
cannot be solved in an algebraic fashion, hence we use logic to approach it.

In Section 4, we introduce the logic AL, a logic which extends classical
logic with an additional connective ‖ corresponding to ambiguity. We provide
a Gentzen-style calculus for this logic and prove it sound and complete for
UDA (and hence as well for SAA; the former has already been proved in
(Wurm, 2017)). Here, the rule (cut) ensures we have congruence as in algebra.

In Section 5 we present elementary results on the proof-theory of AL and
its cut-free version ALcf , the key results being the following: many important
rules, like logical rules corresponding to universal distribution, are admissible
in the cut-free calculus; but the cut-rule itself is not admissible. Whereas this
is usually considered a bad result, for us it is positive: AL (with cut), being
complete for UDA, is too strong for our purposes.
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In Section 6 we put forward our main hypothesis: the cut-free logic ALcf

(arguably with or without commutativity of ‖) is the correct tool for reason-
ing with ambiguity, that is, it covers all and only the correct inferences. We
present some evidence for this hypothesis, though of course it is impossible to
formally prove it. Cut-free ALcf is incongruent, that is, there is a difference
between 1) being logically equivalent (α entails β, β entails α), and 2) being
substitutable in all contexts while preserving truth of implications. We pro-
vide cut-free ALcf with a semantics, which is also incongruent in the above
sense. We then prove soundness and completeness for this semantics. This se-
mantics is based on strings, hence our completeness proof provides also a sort
of representation theorem for ambiguous meanings, where roughly speaking
concatenation represents ambiguity, and a string represents an “ambiguous
normal form”, that is, a list of unambiguous meanings.

Finally, we will discuss the meaning of our results for the nature of am-
biguity. Assuming our main hypothesis is correct, reasoning with ambiguity
presupposes incongruence, that is, logical equivalence does not entail substi-
tutability. In other words, this means: syntactic form of formulas matters
beyond equivalence. Even if we treat ambiguity semantically, there remains
something syntactic to it. This is the final insight provided by the quest for
the proper tool for reasoning with ambiguity, and we think this opens some
philosophical questions on the nature of meaning, which go beyond what we
can address in this article.

2 Logic and the nature of ambiguity

2.1 Background and some history

From a philosophical point of view, one often considers ambiguity to be a kind
of “nemesis” of logical reasoning; for Frege, for example, the main reason to
introduce his logical calculus was that it was in fact unambiguous, contrary to
natural language. The discussion about the detrimental effect of ambiguity in
philosophy can be traced back even to the ancient world, see (Sennet, 2016),
and is still going on, see (Atlas, 1989).2 On the other hand, in natural language
semantics, there is a long tradition of dealing both with ambiguity and logic;
we will discuss here three main approaches.

In the first approach, a natural language utterance is translated into an
unambiguous formal language such as predicate logic, and ambiguity becomes
visible by the fact that there are several translations. To consider a famous

2 An noteworthy exception is Grosholz (2007), who underlines the productive potential
of ambiguity for the discipline of mathematics.
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example:3

Every boy loves a movie.(3)

∃x.∀y.movie(x) ∧ (boy(y)→ loves(y, x))(4)

∀y.∃x.movie(x) ∧ (boy(y)→ loves(y, x))(5)

So ambiguity does not enter into the logic itself, but is “represented” by the fact
that there are two (or more) different logical representations for one sentence.
So we cannot simply translate natural language into logical representations
(predicate logic or other), as there is no way to represent ambiguity in these
languages. The standard way around the lack of functional interpretation is
that we do not interpret natural language sentences as strings, but rather their
derivations: one string has several syntactic derivations, and derivations in
turn are functionally mapped to semantic representations (e.g. see (Montague,
1973)). The problem with this approach is that we basically ban ambiguity
from semantics: we first make an (informed or arbitrary) choice, and then we
construct an unambiguous semantics. Now this is a problem, as we have seen
above:

1. If we simply pick one reading, we cannot know whether a conclusion is
generally valid or not, because we necessarily discard some information.

2. To decide on a reading, we usually use semantic information; but if we
choose a reading before constructing a semantic representation, how are
we suppose to decide?

This becomes even more problematic if we have an ambiguous statement as a
constituent in a larger statement. These reasons indicate that we should not
prevent ambiguity from entering semantics, because semantics is where we
need it, and if it is only to get rid of it. But once ambiguity enters into seman-
tics, we have to reason about its combinatorial, denotational and inferential
properties.

A second possibility of which authors make use (though often implicitly) is
to treat ambiguity as the disjunction of meanings (see Saka, 2007). However,
here the above example gives a good argument why this is necessarily inade-
quate: if we take the disjunction of (4) and (5), the formula would be logically
equivalent to (5) (because (4) entails (5)) – hence there would not even exist
an ambiguity in (3) in any reasonable sense! Apart from this, disjunction be-
haves differently from ambiguity when for example negated: disjunction obeys
the DeMorgan laws, whereas ambiguity remains invariant (see (6-a),(6-b),
we will explain this in more detail below). Hence importantly, ambiguity is
not disjunction, though there is a relation between the two. Actually, this is
a long-lasting misunderstanding among many scholars, even though this has
been recognized many years ago (see for example Poesio, 1994).

3 Technically, this translation presupposes the existence of a boy, this however is irrelevant
to our argument.
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A third approach for representing ambiguity (as e.g. in the quantifier case)
is to use a sort of meta-semantics,4 whose expressions underspecify logical rep-
resentations (see Egg, 2010); famous cases in point would be Cooper storage
and Hole Semantics. Assume our “unambiguous” language is the formal lan-
guage of logic L (say some extension of predicate logic); in addition to this,
we assume we have a meta-language M, by which we can underspecify terms
of L. For example, let χ be a formula of M underspecifying the two formulas
α, β of L (for example (4) and (5)). But now that we have this meta-language
M of our logic L, there are new questions:

1. How do we interpret formulas of M?
2. How do we provide the connectives ofM with a compositional semantics?
3. What are the inferences both in L and M we can draw from formulas in
M?

Once we start seriously addressing these questions, we see that moving to a
meta-language does not solve any of our problems – at best, it removes them
from our sight. We usually do have a compositional semantics and consequence
relation for L; forM we do not. HenceM fails to have the most basic features
of a semantics, unless, of course, M itself is a logic with consequence relation
and compositional semantics. But in this case, considering that M should
conservatively extend L, it seems to be much more reasonable to include the
new operator for ambiguity directly into our object language L. And this
is exactly what we do here. From this example it becomes clear once more
that ambiguity cannot be reasonably interpreted the same way as disjunction:
because L in any normal case already has disjunction, there would be no need
at all forM (this problem is discussed in more detail in van Eijck and Jaspars,
1995).

This is but a short outline of the main problems of the three usual treat-
ments of ambiguity, namely i. moving ambiguity to syntax, ii. treating ambi-
guity as disjunction, and iii. using meta-(meta-)languages. In our view, none
of them substantially contributes to the problem of reasoning with ambiguity.
We will now expose what for us are the key features of ambiguity, which at
the same time are the main challenges in developing a logic of ambiguity. For
more extensive treatment of some aspects, we refer the reader to (Wurm and
Lichte, 2016).

2.2 Key aspects of ambiguity

We think that the crucial point to distinguish ambiguity from related phe-
nomena like vagueness or sense generality lies in considering combinatorial,
denotational and inferential properties of ambiguity separately. Whereas the
latter two are closely related, the combinatorial properties are rather distinct.

4 Actually, this usually results in a meta-metalanguage, because logical representations
are already a form of representation of real meanings.
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One important distinction has to be made from the outset, namely the one
between what we might call local and global ambiguity. For example the word
can is ambiguous between a noun and an auxiliary; however, it will probably
not contribute to the ambiguity of any sentence, because the correct syntactic
category can be inferred from its context, and hence the ambiguity remains
local. Local ambiguity is thus ambiguity which can be definitely discarded at
some level by syntactic or combinatoric properties alone, and therefore can
never enter semantics. What is interesting for us is global ambiguity, which
cannot be disambiguated on the base of morpho-syntactic combinatorics. Note
that even in the context of finance transactions, the word bank remains globally
ambiguous. This article only covers global ambiguity in this sense.

Recall that we let ambiguity be denoted by ‖; we use this symbol both as
an algebraic operator and a logical connective, both binary. Hence a‖b can be
a term in an appropriate algebra, α‖β a logical formula. We use the symbol
also to combine meanings, on the precise nature of which we are agnostic. We
now list the main features of ambiguity.

Discreteness This is a main intuitive feature of ambiguity, in particular dis-
tinguishing it from vagueness: in ambiguity, we have a finite (usually rather
small) list of meanings between which an expression is ambiguous, and those
are clearly distinct. This feature is most basic in the sense that this allows us
to treat ambiguity as a binary algebraic operator or logical connective ‖. To
take our typical example of the word bank: we have the two clearly distinct
meanings “financial institute” and “strip of land along a river”. Note that this
intuitively obvious feature of discreteness is by no means trivial, as the two
clearly distinct meanings of bank are vague themselves, as most common noun
meanings (for example, how broad can a piece of land along a river be to still
qualify as a river bank?)

Universal distribution For the combinatorics of ‖, the most prominent, though
only recently focused (see Wurm and Lichte, 2016)) feature of ambiguity is the
fact that it equally distributes over all other connectives. To see this, consider
the following examples:

(6) a. There is a bank.

b. There is no bank.

(6-a) is ambiguous between m1 =“there is a financial institute” and m2 =
“there is a strip of land along a river”. When we negate this, the ambiguity
remains, with the negated content: (6-b) is ambiguous between n1 =“there is
no financial institute” and n2 =“there is no strip of land along a river”, and
importantly, the relation between the two meanings n1 and n2 is intuitively
exactly the same as the one between m1 and m2. This distinguishes an am-
biguous expression such as bank from a hypernym as vehicle, which is just
more general than the meanings “car” and “bike”:

(7) a. There was a vehicle.
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b. There was no vehicle.

(7-a) means (arguably): “there was a car or there was a bike or ...”; but
(7-b) rather means: “there was no car and there was no bike and ...”. Hence
when negated, the relation between the meanings changes from a disjunction
to a conjunction (as we expect from a classical logical point of view); but
for ambiguity, nothing like this happens: the relation remains invariant. This
also holds for distribution of all other connectives/operations (see Wurm and
Lichte, 2016). This invariance is the first point where we see a clear difference
between ambiguity and disjunction, and we consider this property of univer-
sal distribution to be most characteristic of ambiguity. Universal distribution
seems to be strongly related to another observation: we can treat ambiguity
as something which happens in semantics (as we do here), or we can treat it
as a “syntactic” phenomenon, where “syntactic” is to be conceived in a very
broad sense. In our example, the syntactic approach would be to say: there
is not one word (as form-meaning pair) bank, but rather two words bank1
and bank2, bearing different meanings.5 The same holds for genuine syntactic
ambiguity: one does not assume that the sentence I have seen a man with

a telescope has strictly speaking two meanings, one rather assumes it has
two derivations, where each derivation comes with a single meaning. Universal
distribution is what makes sure that semantic and syntactic treatment are com-
pletely parallel: every operation f on an ambiguous meaning m1‖m2 equals an
ambiguity between two (identical) operations on two distinct meanings, hence

(8) f(m1‖m2) = f(m1)‖f(m2)

Note that in cases where we combine ambiguous meanings with ambiguous
meanings, this leads to an exponential growth of ambiguity, as is expected.
Hence universal distribution is what creates the parallelism between semantic
and syntactic treatment of ambiguity. This means: strictly speaking, we do not
even need to argue whether ambiguity is a syntactic or semantic phenomenon
– because the result in the end should be the same, it is of no relevance where
ambiguity comes from. However, as soon as we start to reason with ambiguity,
a unified semantic treatment will only have advantages, as all information is
in one place. If we consider propositional logic, (8) reduces to

¬(α‖β) ≡ ¬α‖¬β(9)

(α‖β) ∨ γ ≡ (α ∨ γ)‖(β ∨ γ)(10)

(α‖β) ∧ γ ≡ (α ∧ γ)‖(β ∧ γ)(11)

By convention, we use symbols as m1,m2 if we speak about (propositional) lin-
guistic meanings, symbols like a, b, c when we speak about arbitrary algebraic
objects; Greek letters α, β etc. will be reserved for logical formulas. Logically
speaking, this means that ‖ is self-dual: ‖ preserves over negative contexts
such as negation, similar to fusion in (Lambek, 1995) (this logic is however
used for a very different purpose, namely analysis of natural language syntax).

5 This approach is however problematic for different theoretical reasons, see (Saka, 2007).
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Entailments An ambiguity m1‖m2 is generally characterized by the fact that
the speaker intends one of m1 or m2. The point is: we do not know which one
of the two, as for example in

(12) Give me the dough!

From this simple fact, we can already deduce that for arbitrary formulas
φ, α, β, χ in the logic of ambiguity, if φ ` α ` χ and φ ` β ` χ hold, then
φ ` α‖β ` χ holds, hence in particular, α ∧ β ` α‖β ` α ∨ β. But: we can-
not reduce α‖β to neither α nor β: we have α 6` α‖β and β 6` α‖β, and also
α‖β 6` α and α‖β 6` β. This is because our logic is supposed to model the
inferences which are sound in every case (i.e. under every intention), not in
some cases, and all the latter entailments are all unsound in some cases. Hence
‖ does not coincide with any classical connective and is not definable in classi-
cal logic. It is actually a substructural connective (see Restall, 2008, for an
introduction), behaving similar as fusion in linear logic: in particular, it does
not allow for weakening (we will make this precise below). Note that this also
illustrates how ambiguity behaves rather differently from disjunction:

(13) Give me the pastry or give me the money!

Anyone who utters (13) should be satisfied if he gets handed the pastry, and
also if he gets handed the money. If a speaker utters (12), he either means
“pastry” or “money”, but he might complain either if you give him the money
or if you give him the pastry. The conditions for satisfying (12) are thus clearly
different from (13): in the former, whichever of the two you give, you might
remain with an angry interlocutor.

Conservative extension In particular in connection with logic, it should be
clear that our logical calculus of ambiguity should be a conservative extension
of the classical calculus, meaning that for formulas not involving ambiguity,
the same consequences should be valid as before. The reason is that even if we
include ambiguous propositions, unambiguous propositions should behave as
they used to before – if there are new entailments, they should only concern
ambiguous propositions. The algebraic notion corresponding to the fragment
in logic is the one of a reduct, hence the notion equally makes sense in an
algebraic setting.

There are some more important properties of ambiguity which have some
relevance in the paper, which however are more technical. These are the fol-
lowing:

Associativity This property states that given an ambiguity between more than
two meanings, their grouping is irrelevant, formally a‖(b‖c) = (a‖b)‖c. This
seems natural to us, and there seems little to object to it. It is very important
in connection with commutativity.
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Commutativity This property states that for meaning, the order of ambigui-
ties does not play a role, hence a‖b = b‖a. This is not intuitively clear to our
conception of meaning: on the one hand, there does not seem to be in general
a natural order between ambiguous meanings; on the other hand, we often
have a clear intuition on which meaning is primary, secondary etc. Regardless
and from a mathematical point of view, this property will turn out to be the
most critical in this article, and will serve as a probe into the adequacy of
a formal theory of ambiguity. The reason is as follows: in all algebraic ap-
proaches we present, including commutativity will result in having only trivial
(i.e. one-element) algebras. This, among other, is obviously a knock-out crite-
rion, because even if we do not necessarily want to include commutativity, we
definitely want to be able to include it into our axiom set. We thus use this
property to definitely refuse approaches to ambiguity. Having such a pivotal
role, we will in the very end use it also in a positive fashion: the fact that our
logic ALcf – and its incongruent semantics – can be extended with commu-
tativity without any apparent problems for us is a strong evidence that it is
adequate.

Non-productivity or partiality This is a very peculiar feature of ambiguity,
which distinguishes it fundamentally from other propositional connectives: for
connectives like ∧,∨,¬ etc., we find natural language counterparts and, or,
not; in this sense, they are productive. This even holds for definable connec-
tives which do not have a simple counterpart, such as XOR (the exclusive or),
which we can express in some way or other. For ambiguity, this does not hold:
we simply cannot create arbitrary ambiguities in natural language. There is
no English phrase expressing the ambiguity between “squirrel” and “table”.
We conjecture that this will hold in all natural languages (though there does
not seem to be any research on this). One might argue that there is simply no
function for ambiguity, but this is definitely not true. Assume we have a shy
man who wants to ask out his office-mate, but is afraid to commit himself.
It would be extremely useful for him to have a sentence ambiguous between
“would you go out with me” and “do you mind if I open the window” – but
this sentence does (presumably) not exist. It is easy to find many other exam-
ples – just think of what people might want to say (and not say) in court or
politics.

This leads to an important question: why is this the case, and should we
search the motivation in formal properties of ambiguity, or rather in linguistic
considerations? We conjecture the latter, and we give the argument in a nut-
shell: assume there were an (English) ambiguity connective am. The problem
with this connective is: if we say something like x am y, we give less infor-
mation than by saying just x or y, yet we say (quantitatively) more. This
contradicts fundamental Gricean principles, because we say more, still are de-
liberately less informative. Hence an ambiguity connective would already be
an atrocity from the point of view of pragmatics.

And still, reconsidering the case of our shy office worker, this connective
would not be particularly useful: because one of the features of ambiguity is



Reasoning with Ambiguity 11

that a speaker, being ambiguous, does not even commit to being ambiguous
on purpose – this is what makes it so attractive in our example. By being obvi-
ously ambiguous on purpose – say by uttering Would you open the window

am go out with me – one already loses a core feature of “full” ambiguity. Put
differently, “full” ambiguity includes the possibility of not being aware of it,
and if it there were an explicit connective, this possibility is excluded. This is
not the place to dwell on these linguistic arguments; we only want to conclude:
in our view, the partiality of ambiguity is due to linguistic and pragmatic prin-
ciples, not to its semantic properties itself. Hence this is not an argument to
make ambiguity a partial operation in our logics/algebras. We will still con-
sider the possibility of making ‖ a partial operation in our algebras, and check
whether it helps avoid some negative results. As we will see, this is not the
case.

Monotonicity Basically, monotonicity states that every ambiguous term en-
tails itself, and this entailment is closed under weakening in the logical sense:

bank and restaurant entails bank entails bank or restaurant

This is not entirely straightforward, since under this assumption plants and

animals entails plants, but the word animals might provide evidence for
one specific reading of plants. But we are interested in logical soundness, not
plausibility, hence we put this concern aside. Algebraically, this means: if you
increase the arguments of ‖, you increase the value. Logically, its counterpart
is the following inference rule (monotonicity):6

(monotonicity)

α ` γ β ` δ
α‖β ` γ‖δ

Consistency of usage and trust We adopt this feature, but underline that it is
actually the only one from the list here which is not mandatory for ambiguity.
This feature actually distinguishes our work from the approach of van Eijck
and Jaspars (1995). Imagine someone telling you something about banks, and
as he goes on, you discover that what he says does not make any sense to you.
In the end, you notice that he has been using the term bank with different
meanings in different utterances. At this point, you obviously have to consider
most of the discourse meaningless: how can you possibly reconstruct what
meaning was intended in which utterance? Trustful reasoning with ambiguity
makes the following assumption:

(UU) In a given context, (globally) ambiguous terms must be used consis-
tently in only one sense.

This is of course arguable, not only because the notion of “context” remains
vague, but also because we can use the same word with different meanings
in the same sentence, as in I spring over a spring in spring.7 However

6 In our logic, this rule will be admissible, though we formulate rules in a more general
way for technical reasons.

7 Thanks to an anonymous reviewer for this example; obviously, a lot of ambiguity remains
local in this example.
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the classic work by Yarowsky (1995) gives strong evidence for consistent usage
in empirical data.

We underline that reasoning with ambiguity in a situation of distrust is also
possible and has been described, though not as such, by van Eijck and Jaspars
(1995). To illustrate the difference from a formal point of view: p‖q ` p‖q
is a valid inference in both cases (monotonicity), whereas (p‖q) ∧ ¬(p‖q) is a
contradiction in the trustful case, but not in the distrustful case, since we might
intend different propositions in p‖q and ¬(p‖q). Linguistically: a sentence like

(14) He is dead and he is not dead.

is a contradiction in the trustful approach; in the distrustful approach not nec-
essarily: dead could be used in two different senses, say medical and spiritual.

Hence in the distrustful approach, classical theorems are no longer valid
if constituted by ambiguous propositions, and classical inferences (like Modus
Ponens) usually fail if applied to ambiguous propositions (see also the con-
clusion of section 3). There is a lot more to say on this issue, but we plan
to compare the trustful and distrustful approach in a separate publication. In
this article, we want to describe reasoning with ambiguity in a situation of
trust in consistent usage.

3 Algebras of Ambiguity

3.1 Preliminaries and Boolean algebras

In this section, we will present an algebraic approach to the problem of rea-
soning with ambiguity. We will sketch the preliminaries, then present three
relevant classes of algebras, prove the equivalence of their equational theories
(i.e. the set of all equations holding in all algebras), which ultimately will lead
us to discard this approach. The results of this section are thus mostly neg-
ative. If the reader is mainly interested in how ambiguity can be adequately
treated, she can safely skip this section. The interesting result can be summa-
rized as follows: algebra, or at least extensions of Boolean algebras, will not
do the job. About the reasons for this we will speak in the end of this section.
In Section 6 we will see which general insights can be drawn from this.

The general setting we will use here are Boolean algebras, which are
structures of the form B = (B,∧,∨,∼, 0, 1). As these are most well-known,
we do not introduce them (the reader interested in background might consider
(Kracht, 2003), (Maddux, 2006), or many other sources). We denote the class
of Boolean algebras by BA. In this section, we will only use elementary prop-
erties of Boolean algebras, frequently and without proof or explicit reference.
Many results we present here depend on specific properties of Boolean alge-
bras such as the law of double complementation; hence the results do depend
on this very peculiar choice. However, there is a very good justification for
this choice, namely that in semantics of natural language, which is by far the
greatest field of research where ambiguity arises and has to be handled, there
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is (comparatively) very little work on approaches using non-classical logic (but
see Barwise and Etchemendy, 1990, which is very interesting since it also in-
cludes the information-theoretic aspect which is important for ambiguity).

In the algebraic approach to ambiguity, we think of the objects of alge-
bras as propositional meanings; the operations of the algebra (in our case, the
Boolean operators and ‘‖’) correspond to ways to combine these meanings.
Here, the Boolean operations of course (loosely) correspond to their counter-
parts in natural language; for ‘‖’, there is no corresponding connective. Im-
portantly, there is no straightforward sense in which some meanings are more
“basic” than others: all terms denote simple objects, that is, propositional
meanings.

We now discuss what properties the connective ‖ should satisfy on a con-
ceptual level; put differently, we ask: what kind of object is a‖b, and which
rules does the operator ‖ obey? We distinguish three different ways how we
can conceptually conceive of the operation ‖:
1. a‖b denotes the “correct” meaning, that is, the one intended by the speaker

(but which is unknown to any interpreter)
2. a‖b is entailed by the “correct” meaning, that is, the one intended by the

speaker
3. a‖b is a “genuinely ambiguous” object, a sort of underspecification, which

behaves in a certain combinatorial and inferential fashion

a‖b here includes an epistemic aspect in our algebra: because in cases 1. and 2.,
we refer to the intention of the speaker, which is invisible to any outsider. This
is also clear in the case of 3., as in this case, we have a genuinely underspecified
meaning, that is, one the true content of which we cannot reconstruct.

3.2 Three classes of algebras

We now introduce three classes of algebras corresponding to the three concep-
tions mentioned above. All of them will have the same signature (A,∧,∨,∼, ‖,
0, 1), where (A,∧,∨,∼, 0, 1) is a Boolean algebra, and ‖ is a binary operator.
We adopt the following general conventions: boldface letters like A designate
algebras, corresponding letters A denote their carrier set. We define a ≤ b
as an abbreviation for a ∧ b = a (equivalently, a ∨ b = b). Another general
convention we will adopt here is the following: let C be a class of algebras,
t, t′ be terms over their signature. We write C |= t = t′ if for all C ∈ C, all
instantiations of t, t′ with terms denoting objects in C, the equality holds in
C. Hence we write BA |= a ∨ ¬a = 1 etc. The following algebras are ordered
from strong to weak.

Strong ambiguous algebras In this class, we have the following axioms for ‖:

(‖1) ∼(a‖b) = ∼a‖∼b
(‖2) a ∧ (b‖c) = (a ∧ b)‖(a ∧ c)
(‖3) At least one of a = a‖b or b = a‖b holds
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We denote the class of all algebras satisfying these axioms by SAA. (‖1) and
(‖2) will hold in all classes, and it is these axioms which ensure universal
distribution (9)-(11), which thus hold in all algebras we consider. (‖3) is the
axiom peculiar to SAA, and all it states is that a‖b either denotes a or it
denotes b.

Weak ambiguous algebras

(‖1) ∼(a‖b) = ∼a‖∼b
(‖2) a ∧ (b‖c) = (a ∧ b)‖(a ∧ c)

(‖3w) At least one of a ≤ a‖b or b ≤ a‖b holds

(assoc) a‖(b‖c) = (a‖b)‖c

We denote the class by WAA. As we see, it is only the slightly weaker equal-
ity in (‖3w) which distinguishes it from the strong form. Still, the two do not
coincide. However, we will show that every weak ambiguous algebra is actu-
ally a universal distribution algebra. We need the additional axiom (assoc) to
ensure associativity, which is actually derivable in SAA, but does not seem
to be derivable from the other axioms in WAA.

Universal distribution algebras

(‖1) ∼(a‖b) = ∼a‖∼b
(‖2) a ∧ (b‖c) = (a ∧ b)‖(a ∧ c)

(assoc) a‖(b‖c) = (a‖b)‖c
(inf) a ∧ b ≤ a‖b ≤ a ∨ b

(mon) a‖b ≤ (a ∨ c)‖(b ∨ d)

We denote the class by UDA. This is the weakest algebraic class we present
here. As is easy to see, this class is a variety, being axiomatized by a set of
(in)equalities. SAA and WAA are not varieties: every variety contains the
free algebra generated by an arbitrary certain set; however, the free ambiguous
algebra (both weak or strong) over some non-trivial set is not an ambiguous
algebra, because of the disjunctive axiom: since in general, a 6= a‖b 6= b, in the
free algebra neither of the two holds. We will now consider the three classes
one after the other.

3.3 Strong ambiguous algebras

We now present the most important results on the class of strong ambiguous
algebras, which has been introduced and thoroughly investigated in (Wurm
and Lichte, 2016).8 Intuitively, this is a model where all ambiguous meanings

8 Actually, the matter is slightly more complicated: the authors defined WAA and
“proved” it to be equivalent to SAA; this proof was however flawed.
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exist, but every ambiguity is resolved to an underlying intention (this makes
the implicit presupposition that ambiguous meanings are used consistently
in one sense). This is a strong commitment, and mathematical results show
that it is actually too strong. Firstly note, that (‖1),(‖2) are sufficient for
universal distribution: they entail all equations (9)–(11) (for details see Wurm
and Lichte, 2016), as ∨ is redundant. The axiom (id) a‖a = a is obviously
derivable. We now prove the main result on SAA, namely uniformity.

Lemma 1 Let A be a strong ambiguous algebra, and a ∈ A. If a‖∼a = a,
then

1. ∼a‖a = ∼a 5. 0‖∼a = 0 9. ∼a‖0 = ∼a
2. 1‖a = 1 6. a‖1 = a 10. 0‖1 = 0
3. 0‖a = 0 7. a‖0 = a 11. 1‖0 = 1
4. 1‖∼a = 1 8. ∼a‖1 = ∼a

Proof. 1. follows by negation distribution; 2. is because 1‖a = (∼a‖a) ∨ a =
∼a∨a = 1. Results 3.–9. follow in a similar fashion from the distributive laws.
To see why 10. holds, assume conversely that 0‖1 = 1. Then we have

(15) a = 1 ∧ a = (0‖1) ∧ a = (0 ∧ a)‖(1 ∧ a) = 0‖a

– a contradiction to 3. 11. follows by distribution of ∼. �
Obviously, this lemma has a dual where a‖∼a = ∼a, and where all results

are parallel.

Lemma 2 Let A be a strong ambiguous algebra, a ∈ A.

1. If a‖∼a = a, then for all b, c ∈ A, b‖c = b
2. If a‖∼a = ∼a, then for all b, c ∈ A, b‖c = c.

Proof. We only prove 1., 2. is dual. Assume a‖∼a = a, and assume b‖c = c.
By the previous lemma, we know that 1‖0 = 1, 0‖1 = 0, hence

1 = 1 ∨ c = (1‖0) ∨ c = 1‖c by distribution(16)

b = (1‖c) ∧ b = b‖(b ∧ c) by 16, distribution(17)

c = b‖c = (b‖c) ∨ c = (b ∨ c)‖c by assumption, distribution(18)

b ∧ c = b ∧ ((b ∨ c)‖c) = b‖(b ∧ c) = b by 17, 18(19)

b = b ∨ 0 = b ∨ (0‖1) = b‖1 by distribution(20)

b = b ∧ c = (b‖1) ∧ c = (b ∧ c)‖(1 ∧ c) by 19, 20(21)

b = (b ∧ c)‖(1 ∧ c) = b‖c = c by 21, 19,assumption(22)

Hence b‖c = c entails b = c, which proves the claim. �
Now we can prove the strongest result on SAA, the Uniformity Lemma.

Lemma 3 Assume we have a strong ambiguous algebra A, a, b ∈ A such that
a 6= b.

1. If a‖b = a, then for all c, c′ ∈ A, we have c‖c′ = c;
2. if a‖b = b, then for all c, c′ ∈ A, we have c‖c′ = c′.
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Proof. We only prove 1., as 2. is completely parallel. Assume there are a, b ∈
A, a 6= b and a‖b = a. Assume that there are pairs c, c′ ∈ A such that c‖c′ 6= c.
There are two cases:

i) Among these pairs, there is a pair c, c′ such that c′ = ∼c. Then we have
c‖∼c = ∼c, and by Lemma 2, it follows that a‖b = b, which is wrong by
assumption – contradiction.

ii) Among these pairs, there is no pair c, c′ such that c′ = ∼c and c‖c′ 6= c.
Then we necessarily have (among other) a‖∼a = a, and by Lemma 2, this
entails c‖c′ = c – contradiction. �

Put differently: let πl be left projection, a binary function where πl(a, b) =
a; πr is then right projection, with πr(a, b) = b.

Lemma 4 (Uniformity of strong ambiguous algebras) Every strong ambigu-
ous algebra has the form (B,∧,∨,∼, πl, 0, 1) or (B,∧,∨,∼, πr, 0, 1), where
(B,∧,∨,∼, 0, 1) is a Boolean algebra.

Hence for every Boolean algebra, there exist exactly two ambiguous alge-
bras, one where ‖ computes uniformly πl for all arguments, and one where
‖ computes uniformly πr. We say an ambiguous algebra (B,∧,∨,∼, πl, 0, 1)
is left-sided, and respectively (B,∧,∨,∼, πr, 0, 1) right-sided ; we denote the
left-sided algebra extending a Boolean algebra B by Cl(B), the right-sided
extension by Cr(B). This entails that ambiguous algebras are rather uninter-
esting, as extending a Boolean algebra with a left/right projection operator is
not very interesting. It also entails that strong ambiguous algebras with com-
mutative ‖ operation are trivial (i.e. one element), but we will see that this
even holds for more general classes. Hence even though the axiomatization
seems unproblematic, it is too strong. We will therefore next consider algebras
with weaker axioms for ambiguity.

3.4 Weak ambiguous algebras

It is obvious that SAA ⊆ WAA, that is, every strong ambiguous algebra is
a weak ambiguous algebra, since it easily follows from uniformity that strong
ambiguous algebras satisfy (assoc) (simply by case distinction). What is less
obvious is that WAA ⊆ UDA; this is the first thing we will prove here. First
we will prove that (id) holds in WAA.

Lemma 5 WAA |= a = a‖a.

Proof. a ≥ a‖a: a ∧ (a‖a) = (a ∧ a)‖(a ∧ a) = a‖a.
a ≤ a‖a: a ∨ (a‖a) = (a ∨ a)‖(a ∨ a) = a‖a. �
Now this has an important corollary:

Corollary 6 WAA |= a ∧ b ≤ a‖b ≤ a ∨ b.

Proof. We have (a‖b)∧(a∧b) = (a∧(a∧b))‖(b∧(a∧b)) = (a∧b)‖(a∧b) = a∧b
(by idempotence); hence a ∧ b ≤ a‖b by definition of ≤. Parallel for ∨. �

We now need two auxiliary properties which hold in all Boolean algebras:
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B1 If b ∨ ∼a = 1, then a ≤ b.
B2 If a ∨ c = 1 and a ∨ ∼c = 1, then a = 1.

To see B1, consider that if b∨∼a = 1, then a = (b∨∼a)∧a = (b∧a)∨(∼a∧a) =
(b∧ a)∨ 0 = b∧ a, hence by definition of ≤, a ≤ b. To see B2, consider that if
the premise holds, we have 1 = (a ∨ c) ∧ (a ∨ ∼c) = a ∨ (c ∧ ∼c) = a ∨ 0 = a.

Lemma 7 In WAA, the following equalities hold:

1. 1 = 1‖(∼a ∨ b ∨ ∼c)‖1
2. 1 = (1‖(a ∨ c ∨ ∼b)‖(∼a ∨ b)‖1)
3. ((a ∨ c)‖b) ∨ (∼a‖∼b) = 1
4. a‖b ≤ (a ∨ c)‖b
5. a‖b ≤ a‖(b ∨ c)
6. a‖b ≤ (a ∨ c)‖(b ∨ d)

Proof. 1. We have

1 = (a‖b) ∨ ∼(a‖b)
= (1‖(a ∨ ∼b)‖(∼a ∨ b)‖1)
= (1‖(a ∨ ∼b)‖(∼a ∨ b)‖1) ∨ (∼a ∨ b ∨ ∼c)
= 1‖1‖(∼a ∨ b ∨ ∼c)‖1
= 1‖(∼a ∨ b ∨ ∼c)‖1

2. We use B2:

(1‖(a ∨ c ∨ ∼b)‖(∼a ∨ b)‖1) ∨ c = (1‖(a ∨ ∼b ∨ c)‖(∼a ∨ b ∨ c)‖1)
= (a‖b) ∨ ∼(a‖b) ∨ c
= 1.

and

(1‖(a ∨ c ∨ ∼b)‖(∼a ∨ b)‖1) ∨ ∼c= 1‖1‖(∼a ∨ b ∨ ∼c)‖1
= 1‖(∼a ∨ b ∨ ∼c)‖1.

and the claim follows from 1.
3. is obtained from 2. by applying distributive laws.
4. Since ∼a‖∼b = ∼(a‖b), this is obtained from 3 and B1.
5. Parallel to 4 (several steps have to be repeated).
6. The relation ≤, defined by ∧ or ∨, is obviously transitive, hence this

follows from the previous. �
This is already sufficient for the following result:

Corollary 8 Every weak ambiguous algebra is a universal distribution alge-
bra.

Are there weak ambiguous algebras which are not strong ambiguous al-
gebras? This question can be answered positively: just take the algebra with
the four elements {0, 1, 0‖1, 1‖0}, with the obvious order (the square). There
is actually just one algebra with these elements, where necessarily we have
1‖0‖1 = 1, 1‖0‖0 = 1‖0 etc., that is, we have a1‖a2‖a3 = a1‖a3. This can be
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easily proved to be a weak ambiguous algebra, but it is not a strong ambiguous
algebra, as 0 6= 0‖1 6= 1.

The next question is: are there universal distribution algebras which are
not weak ambiguous algebras? Again, the answer is positive: take the UDA
which extends the four element Boolean algebra over {0, a, b, 1} by ambiguous
objects, and take the object a‖b. Then (a‖b)∨a = a‖(a∨ b) = a‖1; (a‖b)∨ b =
1‖b. If this were a weak ambiguous algebra, we would have either a ≤ a‖b or
b ≤ a‖b. If a ≤ a‖b, then a‖b = a ∨ (a‖b) = a‖1, and if b ≤ a‖b, then a‖b =
(a‖b)∨ b = 1‖b. However, every UDA can be completed to a strong ambiguous
algebra in two ways (see Lemma 21) without collapsing any elements of the
underlying Boolean algebra; hence in the algebra over {0, a, b, 1}, we would
either have a = 1 or a = b or b = 1, which by assumption do not hold. This
proves the following:

Lemma 9 SAA ( WAA ( UDA.

This is already all we have to say about this class: Being located between
SAA and UDA, it does not seem to be particularly interesting.

3.5 Universal distribution algebras

In a sense, (‖3) and (‖3w) state that we use an ambiguous term with a given
intention. This might be true if we think of sentences uttered by speakers. It is
no longer true if we just think (for example) of the lexicon, where terms exist
regardless of any intention. UDA models ambiguity without any underlying
intention. Regarding the axioms, (‖1),(‖2) ensure that universal distribution
holds, see (9)-(11). (inf) regulates the relation ≤ between ambiguous and un-
ambiguous objects; (mon) the relation ≤ between ambiguous objects. As we
will later see, (mon) is derivable from the other axioms; we include it nonethe-
less, since it makes the properties of the algebra easier to grasp. It is easy to
see that (mon) amounts to a form of monotonicity: increasing the arguments
of ‖ increases the value of the function:

Lemma 10 (Monotonicity for UDA) For every U ∈ UDA, a, b, c, d ∈ U , if
a ≤ c,b ≤ d, then a‖b ≤ c‖d.

Proof. Assume a ≤ c, b ≤ d. Then c = a∨ c, d = b∨ d, and a‖b ≤ (a∨ c)‖(b∨
d) = c‖d. �

The formulation we choose immediately entails that UDA is a variety,
contrary to SAA and WAA. Note that in presence of distributive laws, (inf)
is equivalent to (id): (id) entails (inf), because (a‖b)∧(a∧b) = (a∧b)‖(a∧b) =
a ∧ b, and hence by definition of ≤, a ∧ b ≤ a‖b; parallel for a ∨ b. Conversely,
(inf) entails idempotence, because then a = a ∧ a ≤ a‖a ≤ a ∨ a = a. Hence
UDA splits (‖3) into two weaker axioms. Note also that as (inf) is correct
beyond doubt, the maybe more questionable (id) is inevitable. Note that (id)
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might look questionable as it entails already things like

a‖b = a‖a‖b
= a‖b‖b
= (a‖b‖b) ∨ (a‖a‖b)
= a‖(a ∨ b)‖b

(We skipped some straightforward intermediate steps.) In UDA, also inequa-
tions such as the following law of disambiguation are satisfied:

(a‖b‖c) ∧ ∼b = (a ∧ ∼b)‖(b ∧ ∼b)‖(c ∧ ∼b)
≤ (a ∧ ∼b)‖0‖(c ∧ ∼b)
≤ a‖c

To get a better intuition on the structure of universal distribution algebras,
we present some first results. We say a term t is in ambiguous normal form,
iff t = t1‖...‖ti, where t1, ..., ti are Boolean terms. The following is not difficult:

Lemma 11 For every term t, there is a term t′ in ambiguous normal form
such that UDA |= t = t′.

To see this, just iterate the application of distributive laws. When we have
a Boolean combination of ambiguous terms, the procedure of forming ambigu-
ous normal forms leads to an exponential blow-up in the size of terms. This
“problem” (if we want to consider it as such) will however turn out immate-
rial for UDA, once we have the Margin Lemma, which is the central result on
UDA.

An interesting property is the following: let t = t1‖...‖ti be a term in
ambiguous normal form. One might conjecture that UDA |= 1 = t iff BA |=
1 = t1, ..., 1 = ti. This is however not correct, as can be seen from the following:

1 = (a‖b) ∨ ∼(a‖b)
= (a ∨ (∼a‖∼b))‖(b ∨ (∼a‖∼b))
= (a ∨ ∼a)‖(a ∨ ∼b)‖(b ∨ ∼a)‖(b ∨ ∼b)

Here, a and b are arbitrary. This can still be strengthened: first, as a special
case, put b ≡ ∼a; then we have:

1 = (a‖∼a) ∨ ∼(a‖∼a)

= 1‖(a ∨ a)‖(∼a ∨ ∼a)‖1
= 1‖a‖∼a‖1

where a is arbitrary. So far, we have only used Boolean algebra axioms and
universal distribution. With (id) and (assoc) we can derive:

1 = (1‖a)‖(∼a‖1)

= ((1‖a)‖(1‖a))‖(∼a‖1) (id)

= (1‖a)‖(1‖a‖∼a‖1) (assoc)

= (1‖a)‖1 substitution of line 1
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There is a parallel derivation (using ∧ instead of ∨) for 0 = 0‖a‖0, hence the
following equalities are valid in UDA:

0 = 0‖a‖0(23)

1 = 1‖a‖1(24)

where a is arbitrary. From here we can prove the following:

Lemma 12 UDA |= a = a‖b‖a.

Proof. By cases:
Case 1 Assume b ≤ a. Then a = 1∧a = (1‖b‖1)∧a = a‖(b∧a)‖a = a‖b‖a.
Case 2 Assume a ≤ b. Then a = a∨0 = a∨ (0‖b‖0) = a‖(a∨b)‖a = a‖b‖a.
Case 3 Assume a 6≤ b, b 6≤ a. Then (a‖b‖a) ∧ a = a‖(b ∧ a)‖a = a (by case

1), hence a ≤ a‖b‖a; similarly, (a‖b‖a)∨a = a‖(b∨a)‖a = a (by case 2), hence
a‖b‖a ≤ a, hence the claim follows. �

Hence in particular, 0‖1‖0 = 0, 1‖0‖1 = 1. Hence we have again a very
strong result, definitely stronger than what our intuition tells us about ambi-
guity. In particular, this makes it problematic to include commutativity:

Lemma 13 Let U be a universal distribution algebra, with a, b ∈ U . Then if
a‖b = b‖a, we have b = a.

Proof. Assume a‖b = b‖a. Then b = b‖a‖b = b‖b‖a = b‖a = b‖a‖a = a‖b‖a =
a. �

Corollary 14 Every commutative universal distribution algebra U has at most
one element.

We can now show the following result, which characterizes UDA very
neatly:

Lemma 15 (Margin Lemma) Let U be a universal distribution algebra. Then
for all a, b, c ∈ U , we have a‖b‖c = a‖c; put differently, UDA |= a‖b‖c = a‖c.

Proof. (For simplicity, we now omit associative brackets)

a‖b‖c = a‖c‖a‖b‖c (a = a‖c‖a)

= a‖c (c = c‖a‖b‖c)

�
Note that in order to derive the Margin Lemma, we have used (inf) by its

equivalent (id), but we have not used (mon), as can be easily checked. Hence
we can derive the following:9

Lemma 16 Every algebra U satisfying (‖1),(‖2),(assoc),(inf) is a universal
distribution algebra.

9 Many thanks to an anonymous reviewer for pointing this out to me!
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Proof. We can use the Margin Lemma, since it follows from the four axioms
already. Hence

(a‖b) ∨ ((a ∨ c)‖(b ∨ d))

=(a ∨ a ∨ c)‖(b ∨ a ∨ c)‖(a ∨ b ∨ d)‖(b ∨ b ∨ d) distributive laws

=(a ∨ c)‖(b ∨ a ∨ c)‖(a ∨ b ∨ d)‖(b ∨ d) Boolean laws

=(a ∨ c)‖(b ∨ d) Margin Lemma

Hence we have (mon) a‖b ≤ (a ∨ c)‖(b ∨ d), and the claim follows. �
In the end, in UDA arbitrary ambiguities “boil down” to the margins of

ambiguous terms: commutativity is excluded, and more than 2-fold ambiguity
is meaningless in this class of algebras. Now this is obviously a problem, which
basically excludes UDA as a realistic model for ambiguity. We will discuss a
way out of this predicament in later; but before this, we will prove a useful
representation theorem for UDA.

Definition 17 We define the canonical UDA over two given Boolean alge-
bra B1,B2 as the direct product algebra B1 × B2, where Boolean operations
are defined pointwise as usual, and the operation ‖ is defined by (a, b)‖(c, d) =
(a, d) for all a, c ∈ B1, b, d ∈ B2.

It is straightforward to check that this satisfies all UDA-axioms. Canonical
UDA have a very simple structure, in that they only slightly extend product
algebras. By the Margin Lemma, we will prove that every UDA has is isomor-
phic to a canonical universal distribution algebra. Given U ∈ UDA, we define
the relations θl, θr ⊆ U2 by

aθlb iff for all c ∈ U , we have a‖c = b‖c
aθrb iff for all c ∈ U , we have c‖a = c‖b

These are equivalence relations for every carrier set U , and in fact they are
congruences for all universal distribution algebras, that is:

Lemma 18 Assume that for a, b, c, d ∈ U , aθlb and cθld. Then

1. ∼aθl∼b,
2. (a ∧ c)θl(b ∧ d),
3. (a ∨ c)θl(b ∨ d), and
4. (a‖c)θl(b‖d)

The same for θr.

Proof. 1. Assume a‖x = b‖x for all x, hence also a‖∼x = b‖∼x. Then in
particular, (∼a)‖x = ∼(a‖(∼x)) = ∼(b‖(∼x)) = (∼b)‖x.

2. Assume a‖x = b‖x and c‖x = d‖x for all x. We have (a ∧ c)‖x =
(a‖x) ∧ (c‖x) by the Margin Lemma, and by assumption and Margin Lemma
(a‖x) ∧ (c‖x) = (b‖x) ∧ (d‖x) = (b ∧ d)‖x.

3. Parallel to 2.
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4. Assume a‖x = b‖x for all x. Hence by associativity, for all x, (a‖c)‖x =
a‖(c‖x) = b‖(d‖x) = (b‖d)‖x, and hence (a‖c)θl(b‖d) (we only need one of the
premises here). �

We define maps hl, hr : U → ℘(U) by hl(x) = {a : aθlx}, hr(x) = {a :
aθrx} (that is, elements are mapped onto congruence classes). These are, by
the famous results of general algebra, homomorphisms for arbitrary universal
distribution algebras. Hence we can construct the two homomorphic images
hl(U) = (Uθl ,∧,∨,∼, 0, 1) (with the congruence classes as carrier set), and
hr(U). We now define the map φ by φ(x) = (hl(x), hr(x)). This is still a
homomorphism for Boolean operations, if we define all operations pointwise
in the image algebra. The image φ[U ] is a set of pairs (of congruence classes),
so we can define ‖ canonically by (a, b)‖(c, d) = (a, d). Hence we obtain a
canonical universal distribution algebra which we denote by φ(U). The crucial
lemma is the following (here ∼= denotes isomorphism of two algebras):

Lemma 19 φ(U) ∼= U.

Proof. We show two things, 1. φ(a‖b) = φ(a)‖φ(b) (that this holds for all
other connectives already follows by general algebra), and 2. φ is a bijection.

1. Note that φ(a)‖φ(b) = (hl(a), hr(a))‖(hl(b), hr(b)) = (hl(a), hr(b)). By
the Margin Lemma, we have hl(a‖b) = hl(a) and hr(a‖b) = hr(b); hence
φ(a‖b) = (hl(a‖b), hr(a‖b)) = (hl(a), hr(b)).

2. φ is surjective by definition. Now assume we have φ(a) = φ(b), hence
hl(a) = hl(b), hr(a) = hr(b). Consequently, we have a‖0 = b‖0, and hence
a‖0‖a = b‖0‖b. As a = a‖0‖a, b = b‖0‖b, it follows that a = b. �

Now as φ(U) is a canonical algebra for every U, this proves the following
theorem:

Theorem 20 (Product representation theorem for UDA) Every UDA is iso-
morphic to a canonical UDA.

This result shows that all UDA are very simple and well-behaved exten-
sions of Boolean algebras. But it also shows, as did our results on SAA, that
they are too simple to be really interesting!

3.6 Equivalence of equational theories

We now prove the equational theories of the three classes to be equivalent.

Lemma 21 For every term t in the signature of UDA, interpretation σ of
t into a canonical universal distribution algebra U = B1 × B2, there exist
two strong ambiguous algebras A1, A2, with interpretations σ1, σ2 into A1, A2

such that (σ1(t), σ2(t)) = σ(t).

Proof. Assume we have the interpretation σ : X → B1 × B2. We know that
for every B ∈ BA there are exactly two strong ambiguous algebras with the
same carrier set. We take these two completions Cl(B1) and Cr(B2), and put
σ1(x) = πl(σ(x)) and σ2(x) = πr(σ(x)).
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We prove that these algebras and assignments do the job as required by
an induction on the complexity of t. For atomic terms, the claim is straight-
forward, as (πl(σ(x)), π2(σ(x))) = σ(x) by definition. Now assume the claim
holds for some arbitrary terms t, t′.

1. We have σ1(t∧t′) = σ1(t)∧σ1(t′) = πl(σ(t))∧πl(σ(t′)) = πl(σ(t∧t′) (by
pointwise definition of ∧); same for πr and σ2, hence (σ1(t ∧ t′), σ2(t ∧ t′)) =
(πl(σ(t ∧ t′)), πr(σ(t ∧ t′))) = σ(t ∧ t′).

2. ∨ parallel.
3. ∼ similar.
4. ‖ σ1(t‖t′) = πl(σ(t‖t′)) = πl(σ(t)). Same for σ2, so (σ1(t‖t′), σ2(t‖t′)) =

(πl(σ(t), πr(σ(t′)), which by canonicity entails the claim. �

Theorem 22 For all terms t, t′, the following three are equivalent:

1. UDA |= t = t′

2. SAA |= t = t′

3. WAA |= t = t′

Proof. 1.⇒ 2: SAA ⊆ UDA, hence the claim is obvious.
2.⇒ 1.: Contraposition: assume UDA 6|= t = t′; hence there is U, σ for

which the equality is false: σ(t) 6= σ(t′). Now we take an isomorphic canonical
UDA, which we denote by can(U), and which has the form B × B′, where
B,B′ ∈ BA. By the isomorphism φ, we have can(U), φ ◦ σ 6|= t = t′. Hence
φ ◦ σ(t) = (a, b) 6= (a′, b′) = φ ◦ σ(t′). Now use the previous lemma: we have
two strong ambiguous algebras A1 and A2, interpretations σ1 and σ2, where
σ1(t) = a, σ2(t) = b, σ1(t′) = a′, σ2(t′) = b′. Now as by assumption, either
a 6= a′ or b 6= b′, we either have A1, σ1 6|= t = t′ or A2, σ2 6|= t = t′. Either way,
SAA 6|= t = t′, hence the claim follows.

1⇒ 3 WAA ⊆ UDA, hence the claim is obvious.
3⇒ 2 SAA ⊆WAA, hence the claim is obvious. �
Hence we have three algebraic models, and all of them have the same

equational theory, that is the same set of valid equations. This is, given the
difference in axiomatization, rather astonishing and shows an interesting con-
vergence. Unfortunately, we cannot consider this convergence as evidence for
the “correct” model of ambiguity – because all algebras have strongly unintu-
itive properties. On the other hand, we do not see any algebraic alternatives
either, because it seems impossible to weaken the axioms of UDA without
losing essential properties of ambiguity. Before we sketch the way out of this
dilemma, we will quickly present the (rather simple) corollaries on the decid-
ability of the equational theories:

Corollary 23 The equational theories of UDA, WAA, SAA are decidable;
more precisely, their decision problem is NP-complete.

Proof. We show the claim for SAA, from which all others follow. To check
that SAA |= t = t′, we just have to reduce the equation by interpreting
‖ as πl and πr respectively, by which the equality reduces to two Boolean
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equalities tl = t′l, tr = t′r. Then the question is equivalent to checking whether
BA |= tl = t′l and BA |= tr = t′r, which is well-known to be NP-complete. �

We will now quickly review one possible solution to the problem of the ax-
ioms being at the same time correct properties of ambiguity and “too strong”.
This solution is to use partial algebras and looks promising at first sight,
but does not really lead out of our predicament.

3.7 Partiality

As we have mentioned above, a peculiar property of ambiguity in natural lan-
guage is that it is – to our knowledge – never productive: ambiguities are in
the lexicon, arise in syntactic derivations and from many other sources, but we
cannot construct them ad libitum, there is no productive mechanism for ambi-
guity. This nicely motivates the idea of algebras where ‖ is a partial operation.
Apart from this intuitive motivation of partiality, there is also a mathematical
one: uniformity for SAA was derived from the existence of objects such as
a‖∼a, 0‖1, which in natural language generally do not arise (leaving irony
as part of pragmatics). The same holds for UDA, where proofs proceed over
peculiar objects like 0‖a‖0 which need not necessarily exist. As UDA is the
largest class of algebras we have presented and the only variety, we will present
the results on partiality only for this class.

A partial universal distribution algebra is an algebra (U,∧,∨,∼, ‖, 0, 1),
where ‖ is a partial function U ×U → U , which satisfies the usual equalities:

(‖1) ∼(a‖b) = ∼a‖∼b
(‖2) a ∧ (b‖c) = (a ∧ b)‖(a ∧ c)

(assoc) a‖(b‖c) = (a‖b)‖c
(inf) a ∧ b ≤ a‖b ≤ a ∨ b

(mon) a‖b ≤ (a ∨ c)‖(b ∨ d)

Here equations have to be read in the following fashion: if one side of the
equality is defined, so is the other, and obviously both are identical. Moreover,
as the operations ∼,∧,∨ are total, it follows that if a‖b is defined, so are
∼a‖∼b, (a∧ c)‖(b∧ c) for all defined c, etc. Moreover, if a‖(b‖c) is defined, so
is b‖c, because undefined terms are absorbing for all operations. We now show
that this extension does not really help.

Assume we have a partial UDA U, where a, b ∈ U , and a‖b 6=⊥ (we use ⊥
as an abbreviation for undefined, not to be confused with 0!). Then we have
the defined terms 1‖(a∨∼b)‖(∼a∨ b)‖1 = 1, 0 = 0‖(a∧∼b)‖(∼a∧ b)‖0. Here,
0‖1 need not be defined, neither ∼a‖a. Still, we can conclude a number of
things (arguments are similar to the ones above). Firstly, note that if a 6= b,
then in all Boolean algebras we have either a ∨ ∼b < 1 or ∼a ∨ b < 1. For
assume a ∨ ∼b = 1. Then b < a (since a 6= b), hence ∼a < ∼b. Now as ∼b
is the smallest element such that b ∨ ∼b = 1, we have ∼a ∨ b < 1. Hence we
conclude: if a‖b 6=⊥, we have 1 = 1‖(a ∨∼b)‖(∼a ∨ b)‖1, where one of a ∨∼b
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and ∼a∨b is not equal 1. Hence for some c < 1, 1‖c‖1 = 1, 0‖c‖0 = 0 (parallel
argument).

By the fact that these terms are defined and Boolean operations remain
total in partial UDA, it follows that for all a ∈ U , we have a c such that
a = a‖(a ∨ c)‖a, a = a‖(a ∧ c)‖a, where c relates to a defined ambiguity.
Moreover, if a‖b is defined, we have

a = a ∧ 1

= a ∧ (1‖(a ∨ ∼b)‖(∼a ∨ b)‖1)

= (a ∧ 1)‖(a ∧ (a ∨ ∼b))‖(a ∧ (∼a ∨ b))‖(a ∧ 1)

= a‖a‖(a ∧ b)‖a
= a‖a ∧ b‖a

Similar for ∨, where we get a = a‖a∨ b‖a, and similarly, a∧ b = a∧ b‖b‖a∧ b.
By the same argument, we get b = b‖a ∨ b‖b etc. This is devastating for a
possible commutativity: assume we have a‖b = b‖a 6=⊥. Then it easily follows
that (a∨b)‖b = b‖(a∨b) and a‖(a∨b) = (a∨b)‖a. And from these we conclude:

a = a‖(a ∨ b)‖a
= (a ∨ b)‖a‖(a ∨ b)
= a ∨ b
= (a ∨ b)‖b‖(a ∨ b)
= b‖(a ∨ b)‖b
= b

This shows the following:

Lemma 24 Assume U is a commutative partial universal distribution alge-
bra, a, b ∈ U . If a‖b 6=⊥, then a = b.

Hence ambiguous elements collapse, provided we have commutativity! Here
we can again make use of commutativity as a probe: it cannot be reasonably
included into partial UDA. This in turn means for us that the theory is
inadequate. There would still be some things to say about this class, and
there are further results which show that it is an inadequate model of our
intuition, but we omit them, as we do not see other results as neat and general
as the ones presented for UDA.

3.8 (Intermediate) Conclusion

The main results of this section suggest that the algebraic approach offers
some interesting insights, but is of little help to adequately address our orig-
inal problem of reasoning with ambiguity. Even the weakest axioms result in
consequences which are strongly counterintuitive. We will take the following
way out: we think that the algebraic approach as such is inept. Put differently:
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the problem is not the particular axioms (we have chosen the weakest imple-
menting the requirements for ambiguity); algebra itself is the problem. There
are two main features of algebra which can be abandoned while preserving the
desiderata of ambiguity:

1. Uniform substitution of atoms by arbitrary terms preserves the truth of
equalities. More formally: let term(X) denote the terms over variables
X = {x1, x2, ...}; assume t, t′ ∈ term(X), and σ : X → term(X) is a
function which is canonically extended to terms. Then if t = t′ is valid in
an algebra, then so is σ(t) = σ(t′).

2. Substitution of arbitrary equivalent terms preserves the truth of equal-
ities, i.e. equivalence entails congruence. More formally: if t1[t2], t′2, t3 ∈
term(X), where t1[t2] is a term with subterm t2, and t1[t2] = t3, t2 = t′2
are valid in an algebra, then so is t1[t′2] = t3.

Actually, both features can be separately abandoned, each time resulting in a
logic. Moreover, the two resulting logics exactly correspond to the two modes
of reasoning with ambiguity we have sketched above (see section 2.2, on consis-
tent usage), depending on whether they assume consistent usage of ambiguous
terms or not:

1. Lack of closure under substitution corresponds to the distrustful mode (no
consistent usage, see van Eijck and Jaspars, 1995)

2. Lack of closure under substitution of equivalents corresponds to the trustful
mode (consistent usage of ambiguous terms), which we will consider here.

Obviously, the former is a fragment of the latter, that is, it has less valid
inferences. In this article, we will only consider the second approach, and
we will provide a comparison of the two modes in further work. Hence we
assume trustful reasoning, which means we preserve closure under uniform
substitution, but we will not have closure under substitution of equivalents.
Logically speaking, substitution of equivalents corresponds to the rule (cut),
which should not be admissible in our logic.

4 The ambiguity logic AL

4.1 Preliminaries

4.2 Multi-sequents and Contexts

The logic AL is an extension of classical (propositional) logic (we denote the
classical sequent calculus by CL), that is, it derives the valid sequents of clas-
sical logic in the language restricted to CL, but it has an additional connective
‖, by which we can derive additional valid sequents. We will show that this
extension is indeed conservative, if we do not include commutativity for ‖.
The connective ‖ is not very exotic from the point of view of substructural
logic: it is a fusion-style operator, which allows for contraction and expansion
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(its inverse), but not for weakening. We present it both in a commutative and
non-commutative version. Our approach differs from the usual approach to
substructural logic in that we extend classical logic with a substructural con-
nective, whereas usually, one considers logics which are proper fragments of
classical logic. In order to make this possible, we have to go beyond the normal
sequent calculus: we still have sequents, but we have different types of con-
texts: one of them we denote by \(...), which basically embeds classical logic,
the other one we denote by ♦(...), which allows to introduce the new connec-
tive ‖. The contexts thus differ in what kind of connectives we can introduce
in them, and what kind of structural rules are allowed in them. Different con-
texts can be arbitrarily embedded within each other. We refer to the symbols
\,♦ as modalities (but they do not immediately relate to modal logic). We
have found this idea briefly mentioned as a way to approach substructural
logic in (Restall, 2008), and structures similar to multi-contexts are found in
(Dyckhoff et al., 2012). They are also used in the context of linear logic, see
for example (de Groote, 1996).

We call the resulting structures multi-contexts. For given multi-contexts
∆,Γ , we call a pair ∆ ` Γ a multi-sequent. The calculus accordingly can
be called a multi-sequent calculus. Our approach is particular in that we
actually extend classical propositional contexts, by that, AL is but one par-
ticular instance of multi-sequent logics. According to us, this field definitely
deserves further study, but this does no longer relate to ambiguity.

In order to increase readability, we distinguish contexts both by the symbols
\,♦, and by the type of period we use to separate formulas/contexts. This will
be the symbol ‘,’ in the classical context, so \(α, β) is a well-formed (classical)
context. Here ‘,’corresponds to ∧ on the left side of `, and to ∨ on the right side
of `, and allows for all structural rules. In the ambiguous context, we use ‘;’,
hence ♦(α;β) is a well-formed (ambiguous) context. The symbol ‘;’ corresponds
to ‖, is self-dual, and allows for some structural rules such as contraction, but
not for others, such as weakening (or commutativity, depending on whether
we include it or not). Formulas are defined as usual: we have a set Var of
propositional variables, and define the set of well-formed formulas WFF by

– if p ∈ Var , then p ∈ WFF;
– if φ, χ ∈ WFF, then (φ ∧ χ), (φ ∨ χ), (φ‖χ), (¬φ) ∈ WFF;
– nothing else is in WFF.

As usual, we will omit outermost parentheses of formulas. Next, we define
multi-contexts; for sake of brevity, we refer to them simply as contexts.

1. \(ε), where ε is the empty sequence, is a well-formed, classical context,
which we also call the empty context.

2. If γ ∈ WFF, then \(γ) is a well-formed, classical context.
3. If Γ1, ..., Γi are well-formed contexts, then \(Γ1, ..., Γi) is a well-formed,

classical context.
4. If Γ1, Γ2 are well-formed, non-empty contexts, then ♦(Γ1;Γ2) is a well

formed ambiguous context.
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Note that ♦ is strictly binary. This choice is somewhat arbitrary, but seems
to be the most elegant way to prevent some technical problems. \ has no
restriction in this sense. Γ ` ∆ is a well-formed multi-sequent, if both Γ,∆
are well-formed, classical contexts. We write Γ [α] to refer to a subformula α
(actually a unary context \(α), see conventions below) of a context Γ ; same
for Γ [∆], where ∆ is a sub-context. More formally, Γ [−] can be thought of as
a function from contexts to contexts. These context functions are inductively
defined by

1. [−] : ∆ 7→ ∆ is a context function (the identity function).
2. If Γ [−] is a context function, Θ1, Θ2 are contexts, then (\(Θ1, Γ [−], Θ2)) is

a context function, where (\(Θ1, Γ [−], Θ2))(∆) = \(Θ1, Γ [∆], Θ2).
3. If Γ [−] is a context function, Θ is a context, then (♦(Γ [−];Θ)) is a context

function, where (♦(Γ [−];Θ))(∆) = (♦(Γ [∆];Θ)). Parallel for (♦(Θ;Γ [−])).
4. Nothing else is a context function.

The calculus with all modalities is somewhat clumsy to write, so we have a
number of conventions for multi-sequents, to increase readability. These
are important, as we make full use of them already in presenting the calculus.

– We generally omit unary classical contexts; hence ♦(α;β) is short for
♦(\(α); \(β)).

– We omit the outermost context in multi-sequents. We can do this because
it always is \(...), otherwise the sequent would not be well-formed. As a
special case, we omit the empty context \(). Hence ` α is a shorthand for
\() ` \(α) etc.

– We write Γ to refer to arbitrary contexts, so α, Γ is a shorthand for
\(\(α), Γ ).

– We write Γ [\α, β] etc. in order to indicate that α, β occur in the scope of
\, that is, the smallest sub-context containing them is classical.

– If i > 2, then ♦(Γ1; ...;Γi) is an abbreviation both for ♦(Γ1;♦(Γ2; ...;Γi))
and ♦(♦(Γ1;Γ2; ...);Γi) (meaning that we can use an arbitrary one of them).
This abbreviation is unproblematic due to rules ensuring associativity of
bracketing. If i = 1, then it is an abbreviation for \(Γ1) (hence for the
classical context!). If i = 0, then it is an abbreviation for \() (the empty
context). The latter two conventions are useful to formulate rules with
more generality.

– We let \(Γ, \(∆1, ...,∆i)) and \(\(∆1, ...,∆i), Γ ) just be an alternative no-
tation for \(Γ,∆1, ...,∆i). Hence classical contexts do not really embed into
each other. This again will allow to formulate rules in greater generality.

We urge the reader to be careful: we will make full use of these conventions
already in the presentation of the sequent calculus. The reason is that only this
way, it will be plain obvious that our calculus is a neat extension of classical
logic. Moreover, we aim to formulate the calculus in a way to make the struc-
tural rules, as far as they are desired, admissible (see Negri and Plato, 2001,
for background). Arguably, some rules could be formulated in an intuitively
simpler way, but at the price of not having admissible structural rules, which
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are problematic for proof search. We skip the proof of basic properties such
as the fact that all rules preserve well-formedness of multi-sequents, which in
fact is not entirely trivial.

4.3 The classical context and its rules

The modality \ (partly) embeds the classical calculus; hence we have the fol-
lowing well-known rules:

(ax) α, Γ ` α,∆, for α ∈ Var

(∧I)

Γ [\α, β] ` Θ
Γ [\α ∧ β] ` Θ (I∧)

Γ ` Θ[α] Γ ` Θ[β]

Γ ` Θ[α ∧ β]

(∨I)

Γ [α] ` Θ Γ [β] ` Θ
Γ [α ∨ β] ` Θ (I∨)

Γ ` Θ[\α, β]

Γ ` Θ[\α ∨ β]

(∧I) and (I∨) show how ∧,∨ correspond to ‘,’, depending on the side of `.
For negation, we have slightly generalized standard rules:

(¬I)

Γ ` ∆,♦(α1; ...;αi)

Γ,♦(¬α1; ...;¬αi) ` ∆ (I¬)

Γ,♦(α1; ...;αi) ` ∆
Γ ` ∆,♦(¬α1; ...;¬αi)

We let negation introduction pertain to the classical context, though it is
somewhat intermediate. Note that the rules slightly generalize the classical
rules; if i = 1, we have the classical rule. This extension is sound by universal
distribution. In the following, we have the three structural rules of classical
logic; these rules are of course restricted to the classical context. We will later
show that weakening and contraction are admissible in the calculus (usual ar-
gument of reducing the degree of the rule), so the only rule we really need is
commutativity.

(\comm)

Γ [\Ψ,Θ]

Γ [\Θ,Ψ ] (\weak)

Γ [∆]

Γ [\(∆,Ψ)] (\contr)

Γ [\(∆,∆)]

Γ [∆]

This notation means that the rules can be equally applied on both sides of `.
Note that we have all these rules not for formulas, but for contexts (recall that
in our notation, a formula is just a shorthand for an atomic context anyway).
Also keep in mind that classic context does not embed in itself; this is impor-
tant to read (\weak),(\contr) properly. Hence by our conventions, the classical
\ is really ubiquitous in the calculus.
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4.4 The ambiguous context and its rules

♦ is a binary modality, and hence there should be no way to introduce single
formulas in this context (recall that in the unary case, ♦(Γ ) is an abbreviation
for \(Γ )). The introduction rule for ♦ is as follows:

(I♦I)

Γ,Λ ` ∆,Ψ Θ,Λ ` Φ, Ψ
♦(Γ ;Θ), Λ ` ♦(∆;Φ), Ψ

Note that this rule implements and generalizes both (inf) and (mon) from
the UDA-axioms: it models (inf) if either both ∆,Φ are empty (which is pos-
sible) or both Γ,Θ are empty, and it models (mon) if both Λ, Ψ are empty.
Here our conventions allow us to formulate all these instances in one rule.
By this, we can also see that these rules are in a sense a generalization of
•-introduction in the Lambek-calculus. We have two more rules introducing
♦, which are admissible in the calculus with cut, but necessary to provide for
proper distribution and invertibility of negation in the cut-free case. At first
glance, they have nothing to do with negation, however they solve problems
of distribution of negation in a surprising fashion:

(I♦)

Γ ` ∆1, Ψ1, Θ Γ ` ∆2, Ψ2, Θ

Γ ` ♦(∆1;∆2),♦(Ψ1;Ψ2), Θ (♦I)

∆1, Ψ1, Θ ` Γ ∆2, Ψ2, Θ ` Γ
♦(∆1;∆2),♦(Ψ1;Ψ2), Θ ` Γ

Firstly, note that they are sound due to negation properties: assume Γ `
∆1, ψ1, Θ and Γ ` ∆2, ψ2, Θ are sound. Then so are Γ,¬ψ1 ` ∆1, Θ and
Γ,¬ψ2 ` ∆2, Θ, hence Γ,♦(¬ψ1;¬ψ2) ` ♦(∆1;∆2), Θ. Now by distribution,
we should have Γ,¬(ψ1‖ψ2) ` ♦(∆1;∆2), Θ, and by invertibility (aka double
negation elimination) we should have: Γ ` ♦(∆1;∆2), Θ, ψ1‖ψ2. It is easy to
see that (I♦),(♦I) allow for this kind of inference without any problematic steps
such as deleting connectives.10 There are two (parallel) introduction rules for ‖:

(‖I)
Γ [♦(α;β)] ` Θ
Γ [α‖β] ` Θ (I‖)

Γ ` Θ[♦(α;β)]

Γ ` Θ[α‖β]

These rules eliminate the ♦-context, and create a classical one. There are
two structural rules in ♦-context, namely associativity and contraction (we do
for now not allow commutativity). (♦contr) is obviously admissible with cut,
and even without cut, we will prove it to be admissible, so it is not part of the
calculus.

(♦assoc)

Ψ [♦(Γ ;♦(∆;Θ))]

Ψ [♦(♦(Γ ;∆);Θ))] (♦contr)

Γ [♦(α;α)]

Γ [♦(α)]

Here double lines indicate that the rule works in both directions, and ab-
sence of ` means rules work equally on both sides. Together with (cut), these

10 These rules also allow us to dispense with the negative context used in (Wurm, 2017).
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rules would be sufficient. However, we add two more rules which ensure that
we will satisfy the universal distribution in the cut-free case.

(inter1)

Γ [\♦(∆;Ψ), ∆] Γ [\♦(∆;Ψ), Ψ ]

Γ [♦(∆;Ψ)]

This looks like a law for eliminating contexts, but it is rather a distribu-
tive law for ∧ on the left and ∨ on the right. Note that if we have a con-
text Γ [\(♦(∆;Ψ), ∆′)], we can always derive Γ [\(♦(\(∆,∆′);Ψ), \(∆,∆′))] via
(admissible) (\weak). We call the rule (inter1) since the resulting context
Γ [♦(∆;Ψ)] might be called an interpolant for the two premises, containing
only the material common to the two. This formulation has two advantages:
firstly, (\contr) is admissible with (inter1) (as we will show below), and more
importantly, (inter1) is invertible, hence if the conclusion is correct, so are
the premises, which is advantageous for proof search.11 Hence (inter1) slightly
generalizes normal distribution: it ensures we can properly distribute ∧ on the
left and ∨ on the right; for the dual distribution of ∧ on the right and ∨ on
the left we need a more problematic rule:

(inter2)

Γ [\Ψ,♦(∆;Ψ ;∆′)] Γ [♦(∆; \(β, Ψ);∆′)]

Γ [♦(∆;Ψ ;∆′)]

Here again the consequence can be thought of as an interpolant of the two
premises, containing only the common material. To understand its meaning,
consider that in terms of formulas, it means as much as

((β∧(α‖β‖α′))∨(α‖(β∧β′)‖α′) ≡ α‖β‖α′ ≡ ((β∨(α‖β‖α′))∧(α‖(β∨β′)‖α′)
We will motivate this rule more explicitly in section 5.2.2. In particular, with-
out this rule the rules (I∧) and (∨I) do not seem to be invertible, which would
be very problematic. This rule has the problematic property that it eliminates
material: the β of the right premise does not occur in the conclusion. However,
this seems to be inevitable, and the drawback is made up by two properties:
firstly, (inter2) makes structural rules admissible, and secondly, it is fully in-
vertible: truth of the conclusion entails truth of the (weaker) premises. We
will see that invertibility is actually of central importance for reasoning with
ambiguity (see proof of Lemma 56 for an example), and also crucial for the
matrix semantics. We will also quickly provide alternative, simpler, but less
favorable equivalent versions for these two rules in section 5.

4.5 Cut

We now present the cut rule. Its adaption to multi-sequents is straightforward,
as unary contexts are always classical (♦ is a strictly binary modality).

11 Of course, this comes with the downside that the conclusion is shorter than the premises,
but this is acceptable as in another formulation, we would need the rule (\contr) which has
the same property.
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(cut)

Γ [α] ` Ψ ∆ ` α,Θ
Γ [∆] ` Ψ,Θ

Note that (cut) does not substitute formulas, but atomic contexts. It ensures
transitivity and congruence without any special cases to consider. Importantly,
as every context has a particular modality, also the context inserted by cut
comes with a modality – but it does not need to be the same as the one of the
cut-formula. We define the notion of a derivation as usual by labelled proof-
trees. A proof is a labelled tree where 1. all leaves are instantiations of (ax),
and 2. every subtree of depth 1 is an instantiation of one of the other rules
of the calculus. A multi-sequent Γ ` ∆ is derivable if it is the root of such a
proof-tree. In this case, we write AL Γ ` ∆, meaning the sequent is derivable
in AL. Also the cut-free calculus will play an important role in the sequel; we
denote this calculus by ALcf , and write ALcf Γ ` ∆ if the sequent is derivable
in AL without using the cut-rule. We will, in the sequel, mostly write  for
AL, and cf for ALcf . We first consider the full calculus AL, which is the less
interesting of the two.

4.6 Algebraic interpretations of AL

Because of the equivalence of the equational theories, we will only consider
interpretations into UDA; by Theorem 22, all soundness and completeness
results will hold for SAA and WAA as well. The interpretation of AL into
UDA is straightforward, but we have to spell it out nonetheless. We define
interpretations for contexts; this is necessary for the usual inductive soundness
proof. Assume U ∈ UDA and σ : Var → U is an (atomic) interpretation. We
define two interpretation functions σ, σ by:

1. σ(p) = σ(p) = σ(p), for p ∈ Var .
2. σ(φ ∧ χ) = σ(φ) ∧ σ(χ) = σ(φ ∧ χ)
3. σ(φ ∨ χ) = σ(φ) ∨ σ(χ) = σ(φ ∨ χ)
4. σ(¬χ) = ∼σ(χ) = σ(¬χ)
5. σ(φ‖χ) = σ(φ)‖σ(χ) = σ(φ‖χ)
6. σ(\(Γ1, ..., Γi)) = σ(Γ1) ∨ ... ∨ σ(Γi)
7. σ(\(Γ1, ..., Γi)) = σ(Γ1) ∧ ... ∧ σ(Γ )
8. σ(♦(Γ ;∆)) = σ(Γ )‖σ(∆)
9. σ(♦(Γ ;∆)) = σ(Γ )‖σ(∆)

As is easy to see, σ and σ coincide on formulas, and hence in the formula case
there is no reason to distinguish them. They also coincide in their interpreta-
tion of ‘;’, but as there might be a classical context embedded, it is important
to keep them distinct.

We define truth in an algebra as usual: U, σ |= Γ ` ∆ iff σ(Γ ) ≤U σ(∆);
as a special case, we write U, σ |= ∆ iff 1U ≤U σ(∆). Moreover, we define the
notion of validity in a class as usual by UDA |= Γ ` ∆ (stating that Γ ` ∆
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is valid) iff for all U ∈ UDA, σ : Var → U , we have U, σ |= Γ ` ∆. We
now prove soundness and completeness of UDA-semantics for AL, that is,
UDA |= Γ ` ∆ iff AL Γ ` ∆. We start with soundness.

4.7 Soundness for AL

Recall that Γ [−] is a function which is inductively defined; this definition allows
us to perform inductions over the complexity of Γ [−], as in the following proof:

Lemma 25 For arbitrary Γ [−], ∆,Ξ, interpretation σ, we have σ(Γ [∆], Ξ) ≤
σ(Γ [\(∆,Ξ)])

Proof. An easy induction over Γ . If Γ [−] is the identity function, then the
claim is obvious. Assume the claim holds for some Γ [−]. then it obviously holds
for the function \(Θ1, Γ [], Θ2), since the result is identical up to \-commutation.
Now take the function ♦(Γ [];Θ). Obviously, UDA |= (a‖b) ∧ c = (a ∧ c)‖(b ∧
c) ≤ (a‖(b∧ c)). This entails that σ(♦(Γ [∆];Θ), Ξ) ≤ σ(♦(Γ [∆,Xi];Θ). Same
for the function ♦(Θ;Γ []). �

Lemma 26 (Soundness) If AL Γ ` ∆, then UDA |= Γ ` ∆.

Proof. We make the usual induction over proof rules, showing they preserve
correctness. We omit this for some of the classical rules for which the standard
proofs can be taken over with minor modifications.
I (I♦I) Assume Γ,Λ ` ∆,Ψ and Θ,Λ ` Φ, Ψ are true in a model. Then by
Lemma 10, ♦(\(Γ,Λ); \(Θ,Λ)) ` ♦(\(∆,Ψ); \(Φ, Ψ)) is true, too. It is now easy
to check that by distributive laws (ensured by (‖1),(‖2)),

σ(♦(\(Γ,Λ); \(Θ,Λ))) = σ(\(♦(Γ ;Θ), Λ))
σ(♦(\(∆,Ψ); \(Φ, Ψ))) = σ(\(♦(∆;Φ), Ψ))

I (I♦) Assume we have σ(∆) ≤ σ(Γ1, Θ1, Ξ) and σ(∆) ≤ σ(Γ2, Θ2, Ξ). There
are formulas γ1, γ2 such that for i ∈ {1, 2}, σ(γi) = σ(Γi). Then we have
σ(∆,¬γ1) ≤ σ(Θ1, Ξ) and σ(∆,¬γ2) ≤ σ(Θ2, Ξ) by soundness of (¬I) (see be-
low), and by soundness of (I♦I), we have σ(∆,♦(¬γ1;¬γ2)) ≤ σ(♦(Θ1;Θ2), Ξ).
By soundness of (I¬), we obtain in turn that σ(∆) ≤ σ(¬(¬(γ1‖¬γ2)),
♦(Θ1;Θ2), Ξ). By universal distribution and double complementation elim-
ination in BA, this is equivalent to σ(∆) ≤ σ(♦(Γ1;Γ2),♦(Θ1;Θ2), Ξ).

I (♦I) Parallel.

I (‖I),(I‖),(assoc): the former are sound, because antecedent and consequent
have actually the same interpretation; the latter is obvious.

I (¬I) is sound by soundness of the classical negation rule in Boolean algebras
and negation distribution ensured by (‖I).
I (I¬) same.

I (∧I),(I∨) Straightforward, since interpretation remains identical.

I (∨I) We prove that σ(Γ [α]) ∨ σ(Γ [β]) = σ(Γ [α ∨ β] by induction over the
complexity of Γ [−]. The claim is obvious for Γ [α] = α. Assume it holds for
some Γ [−]. Then
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σ(\(Γ [α], ∆))∨σ(\(Γ [β], ∆))
= (σ(Γ [α]) ∧ σ(∆)) ∨ (σ(Γ [β]) ∧ σ(∆)) (definition of σ)
= (σ(Γ [α]) ∨ σ(Γ [β])) ∧ σ(∆) (Boolean distributive law)
= σ(Γ [α ∨ β]) ∧ σ(∆) (induction hypothesis)
= σ(\(Γ [α ∨ β], ∆)) (definition of σ)

Hence the claim follows for \(Γ [−], ∆), parallel for \(∆,Γ [−]). Moreover,

σ(♦(Γ [α];∆))∨(σ(♦(Γ [β];∆)))
= σ((Γ [α])‖σ(∆)) ∨ (σ(Γ [β])‖σ(∆)) (definition of σ)
= (σ(Γ [α]) ∨ σ(Γ [β]))‖(σ(∆) ∨ σ(∆)) (Margin Lemma)
= σ((Γ [α ∨ β])‖σ(∆)) (IH and (id))
= σ(♦(Γ [α ∨ β]);∆) (definition of σ)

Hence the claim follows for ♦(Γ [−];∆) (parallel for ♦(∆;Γ [−])), and hence for
arbitrary contexts. Since σ(Γ [α]) ≤ σ(∆) and σ(Γ [β]) ≤ σ(∆) entail σ(Γ [α])∨
σ(Γ [β]) ≤ σ(∆), it follows that σ(Γ [α ∨ β] ≤ σ(∆).
I (I∧) A parallel argument to (∨I).

I (inter1) We just consider the case on the left of `; the other case is par-
allel. Assume Γ [♦(∆;Ψ), ∆] ` Ξ and Γ [♦(∆;Ψ), Ψ ] ` Ξ are true in a model.
Assume moreover that δ, ψ are formulas such that σ(δ) = σ(∆) and σ(ψ) =
σ(Ψ), which obviously exist. Because of soundness of ∨-rules we know that
Γ [♦(∆;Ψ), δ∨ψ] ` Ξ is also true, and since in general a‖b ≤ a∨b, it follows that
σ(♦(∆;Ψ), δ ∨ ψ)) = σ((δ‖ψ) ∧ (δ ∨ ψ)) = σ(♦(∆;Ψ)), hence Γ [♦(∆;Ψ)] ` Ξ
is true as well.

I (inter2) We just consider the case on the left of `; the other case is paral-
lel. Assume σ(Γ [Ψ,♦(∆;Ψ ;∆′]) ≤ a and σ(Γ [♦(∆; \(β, Ψ);∆′)] ≤ a; moreover
assume σ(δ) = σ(∆) = d, σ(δ′) = σ(∆′) = d′, σ(ψ) = σ(Ψ) = p, σ(β) = b. By
soundness of (∨I) and other simple rules, it follows that σ(Γ [((ψ∧ (δ‖ψ‖δ′))∨
(δ‖(β ∧ Ψ)‖δ′)]) ≤ a, and
σ((ψ ∧ (δ‖ψ‖δ′)) ∨ (δ‖(β ∧ ψ)‖δ′)) = (p ∧ (d‖p‖d′)) ∨ (d‖(b ∧ p)‖d′)

= (p ∨ (d‖(b ∧ p)‖d′)) ∧ ((d‖p‖d′) ∨ (d‖(b ∧ p)‖d′))
where obviously d‖p‖d′ ≤ (p ∨ (d‖(b ∧ p)‖d′)), and d‖p‖d′ ≤ (d‖p‖d′) ∨
(d‖(b ∧ p)‖d′). Hence, as contexts cannot be negated (just formulas), we have
σ(Γ [δ‖ψ‖δ′] = σ(Γ [♦(∆;Ψ ∆′)] ≤ a.

I (cut) We use the well-known fact that in Boolean algebras, we have a∧¬b ≤ c
iff a ≤ c ∨ b. Assume Γ [α] ` Ψ and ∆ ` α,Θ are true in a model, and let
θ ∈ WFF be a formula such that σ(θ) = σ(Θ). Then ∆,¬θ ` \α is true, and
since contexts cannot be negated, so is Γ [\(∆,¬θ)] ` Ψ (by monotonicity). By
Lemma 25, Γ [∆],¬θ ` Ψ remains true, and by Boolean laws, so is Γ [∆] ` Ψ, θ,
where θ can be again replaced by Θ. �

4.8 Completeness for AL

We now present a standard algebraic completeness proof for AL and UDA via
the Lindenbaum algebra for AL, denoted by Linda. Its carrier set M is the
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set of AL-formulas modulo logical equivalence: we write α a` β iff AL α ` β,
AL β ` α. This relation is symmetric by definition, reflexive and transitive
(by cut). We put αa` = {β : βa`α}, and M = {αa` : α ∈ WFF}. The next step
will be to show that a`, more than an equivalence relation, is a congruence
over connectives.

Lemma 27 Assume α1a`β1, α2a`β2. Then for ? ∈ {∧,∨, ‖}, α1 ? α2a`β1 ?
β2, and ¬α1a`¬β1.

Proof. By cases; for all classical connectives, just use standard proof; for ‖,
this is no less straightforward. �

Hence we can use the equivalence classes irrespective of representatives and
define, for m,n ∈M :

– m ∧ n = (α ∧ β)a`, where α ∈ m,β ∈ n
– m ∨ n = (α ∨ β)a`, where α ∈ m,β ∈ n
– m‖n = (α‖β)a`, where α ∈ m,β ∈ n
– ∼m = (¬α)a`, where α ∈ m
– 1 = (p ∨ ¬p)a`, where p ∈ Var
– 0 = (p ∧ ¬p)a`, where p ∈ Var

Since our calculus subsumes the classical propositional calculus, the algebra
(M,∧,∨,∼, 0, 1) is a Boolean algebra, where the relation ≤ coincides with
` (modulo equivalence). We prove this extension is a universal distribution
algebra:

Lemma 28 Linda = (M,∧,∨,∼, ‖, 0, 1) is a universal distribution algebra.

Proof. ` corresponds to ≤, = corresponds to a`. Hence equalities fall into
two subclaims, which we sometimes treat separately.
(‖1) i. (a‖b) ∧ c ≤ (a ∧ c)‖(b ∧ c).

a, c ` a b, c ` c
♦(a; b), c ` ♦(a; c)

(I♦I)
♦(a; b), c ` c ♦(a; b), c ` c

♦(a; b), c ` ♦(c; c)
(I♦I)

♦(a; b), c ` ♦(a ∧ c; c)
(I∧)

♦(a; b), c ` ♦(a; b)

a, c ` c b, c ` b
♦(a; b), c ` ♦(c; b)

(I♦I)

♦(a; b), c ` ♦(a ∧ c; b)
(I∧)

♦(a; b), c ` ♦((a ∧ c); (b ∧ c))
(I∧)

...

(a‖b) ∧ c ` (a ∧ c)‖(b ∧ c))

ii. (a ∧ c)‖(b ∧ c) ≤ (a‖b) ∧ c.

a, c ` c b, c ` c
♦(\(a, c); \(b, c)) ` c

(I♦I)

a, c ` a b, c ` b
♦(\(a, c); \(b, c)) ` ♦(a; b)

(I♦I)

♦(\(a, c); \(b, c)) ` a‖b
(I‖)

♦(\(a, c); \(b, c)) ` (a‖b) ∧ c
(I∧)

..

.

(a ∧ c)‖(b ∧ c) ` (a‖b) ∧ c

(‖ 2) i. ¬(a‖b) ≤ ¬a‖¬b Straightforward; we abbreviate the proof:
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♦(a; b) ` a‖b
¬(a‖b) ` ♦(¬a;¬b)

(¬I), (I¬)

¬(a‖b) ` ¬a‖¬b
(I‖)

ii. ¬a‖¬b ≤ ¬(a‖b) is parallel.

(assoc) Straightforward.

(inf) Consider the following (abbreviated) proof for a ∧ b ≤ a‖b:

a, b ` a a, b ` b
a, b ` ♦(a; b)

(I♦I)

a ∧ b ` a‖b

a‖b ≤ a ∨ b can be proved similarly.

(mon) a‖b ≤ (a∨ c)‖(b∨d) is easy to derive from a ` a∨ c, b ` b∨d and (I♦I).
�

So we obtain a completeness result following the standard argument: if a
sequent is valid in universal distribution algebras, it is in particular valid in
Linda, the term algebra; hence it is derivable in the calculus. This proves
part 1 of the following theorem; 2 and 3 follow by equivalence of equational
theories.

Theorem 29 (Soundness and Completeness)

1. UDA |= Γ ` ∆ if and only if AL Γ ` ∆.
2. SAA |= Γ ` ∆ if and only if AL Γ ` ∆.
3. WAA |= Γ ` ∆ if and only if AL Γ ` ∆.

Note, by the way, that for completeness we need neither of (inter1),(inter2),
(♦I),(I♦), hence these rules are admissible, provided we have (cut). This shows
that for a complete logic for UDA, we only need a slight extension of the
classical calculus (denoted by CL) with (I♦I) and (‖I),(I‖).

Corollary 30 In AL, the rules (inter1),(inter2),(♦I),(I♦) are admissible.

Hence CL with three additional rules is enough to be sound and complete
for UDA. In the cut-free calculus however, these admissible rules will be of
crucial importance to ensure congruence results, especially for distributive
laws.

Given the negative results we have obtained for our algebras, Theorem 29 is
a not a positive result for AL, on the contrary: it entails that AL is inadequate
for reasoning with ambiguity. The crucial property hereby is what we call
congruence: if Γ [Θ] a` ∆, Θ a` Θ′, then Γ [Θ′] a` ∆. This is the logical
counterpart of congruence in algebra, and it is ensured by the rule (cut). If we
omit this rule, we lose congruence, and more importantly, we can no longer
derive the undesirable results which follow from Theorem 29. This is why the
cut-free calculus ALcf will be in the focus of what follows.
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5 Elementary proof-theory for AL and ALcf

5.1 Ambiguous and classical theorems

Our results on UDA already entail some strong results for AL (with cut). We
start with the following result:

Lemma 31 Assume α = α1‖β‖α2, γ = γ1‖δ‖γ2, where α1, α2, γ1, γ2 are for-
mulas of classical logic. Then AL α ` γ if and only if CL α1 ` γ1 and
CL α2 ` γ2.

Proof. If : Assume CL α1 ` γ1, CL α2 ` γ2. Then for all Boolean algebras,
all interpretations we have σ(α1) ≤ σ(γ1) etc. By the Margin Lemma, σ(α) =
σ(α1)‖σ(α2), σ(γ) = σ(γ1)‖σ(γ2). Hence by (mon), we have σ(α) ≤ σ(γ)
for all σ and all universal distribution algebras. By completeness, the claim
follows.

Only if : Contraposition: assume without loss of generality 6CL α1 ` γ1.
Then there is a Boolean algebra B and interpretation σ with σ(α1) 6≤ σ(γ1).
Then we can construct the canonical UDA (see definition 17) B×B, and by
the definition of ≤ in canonical UDA, σ(α1‖α2) 6≤ σ(γ1‖γ2). By the Margin
Lemma, σ(α1‖α2) = σ(α), σ(γ) = σ(γ1‖γ2), hence σ(α) 6≤ σ(γ), and by
soundness, 6AL α ` γ. �

As special cases, we obtain the following, which is not trivial because of
the presence of the cut rule!

Corollary 32 Let ∆,Γ be multi-sequents which (1) do not contain any oc-
currence of ‖, (2) nor any occurrence of ♦. Then AL ∆ ` Γ iff CL ∆ ` Γ .

Proof. Consider that ♦(∆;∆) a` ∆ and the previous lemma. �
Hence, AL is a conservative extension of classical logic. This tells us some-

thing about commutativity as well (these considerations are actually just the
logical counterpart to what we already said about UDA).

Convention We use 1 in proofs as a placeholder for an arbitrary theorem
of classical logic, 0 as a placeholder for an arbitrary contradiction of classical
logic. It is important that 1 is not equal to a particular classical theorem, since
in ALcf , not all classical theorems are exchangeable in proofs; same for 0!

Now take the following rule:

(♦comm)

Γ [♦(∆;Ψ)]

Γ [♦(Ψ ;∆)]

Lemma 33 Let ALcomm be the calculus AL (with cut) with the additional rule
(♦comm). For every α ∈ WFF, we have ALcomm` α; put differently: ALcomm is
inconsistent.

Proof. By completeness, we know that AL ♦(1; 0; 0; 1), and AL ♦(0; 1; 1; 0) `
α for arbitrary α (since UDA |= 1 = 1‖0‖1 etc.). With (♦comm), we know
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that AL ♦(1; 0; 0; 1) ` ♦(0; 1; 1; 0). Hence, by two applications of (cut), we
derive AL ♦(1; 0; 0; 1) ` α and AL α. �

Note: this result – as we explained above – disqualifies the calculus for our
purposes. However, as we will argue more explicitly below, this only concerns
the calculus ALcomm with (cut); without (cut), the rules of ALcf do not seem
to derive any counterintuitive sequents (but of course this remains an open
problem, it seems to be too early to make this a definite claim), and ALcf+comm

is provably consistent.
For the remainder of this article, we will therefore only consider the cut-free

calculus ALcf .

5.2 Admissible rules of ALcf I: Structural rules

5.2.1 Weakening in classical context

It is well-known that in the classical calculus with shared contexts, weakening
is admissible (see Negri and Plato, 2001). We slightly extend this result to our
new calculus and multisequents. Recall that we write  for AL, cf for ALcf .

Definition 34 We write n Γ ` ∆, if the longest branch from root to leaf in
the shortest AL proof tree of Γ ` ∆, has length ≤ n; same for ncf Γ ` ∆ (hence
n ≥ 1, we skip the inductive definition for reasons of space, for background
check (Negri and Plato, 2001)).

The following is a standard lemma:

Lemma 35 Assume ncf Γ [∆] ` Θ[Ψ ]. Then ncf Γ [\(∆,Ξ)] ` Θ[\(Ψ,Λ)] for
arbitrary Ξ,Λ.

Proof. Induction over n; the induction base is clear, for the way we formulated
the axiom. So assume the claim holds for some n ∈ N. We can now make the
usual case distinction as to the last rule applied in the derivation of the sequent.
By induction hypothesis, it is sufficient to show that the following rule (\weak)
can be exchanged with the preceding one in some way, thereby moving upward
in the tree. As the argument is entirely standard (and takes pages if spelled
out), we just illustrate it with one example:

Γ,Λ ` ∆,Ψ Θ,Λ ` Φ, Ψ
♦(Γ ;Θ), Λ ` ♦(∆;Φ), Ψ

(I♦I)

♦(Γ ;Θ), \(Λ,Ξ)) ` ♦(∆;Φ), Ψ
(\weak)

We can move the rule upward by re-arranging the derivation as follows:

Γ,Λ ` ∆,Ψ
Γ, \(Λ,Ξ)) ` ∆,Ψ

(\weak)
Θ,Λ ` Φ, Ψ

Θ, \(Λ,Ξ) ` Φ, Ψ
(\weak)

♦(Γ ;Θ), \(Λ,Ξ) ` ♦(∆;Φ), Ψ
(I♦I)

Similar (and mostly much easier) arguments can be applied in all cases where
weakening is applied in other positions, and the same holds for all other rules
of the calculus. �
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5.2.2 More distribution rules of ALcf

We prove the admissibility of some additional distribution rules, which in turn
will be important to prove general invertibility and congruence results. Firstly,
consider the following rules:

(distr)

Γ [\♦(∆;Ψ), Θ1] Γ [\♦(∆;Ψ), Θ2]

Γ [♦((\(∆,Θ1); \(Ψ,Θ2)] (subst)

Γ [Ψ ] Γ [♦(∆;β;∆′)]

Γ [♦(∆;Ψ ;∆′)]

Lemma 36 (distr) and (subst) are admissible in ALcf .

Proof. For (distr), we just use (\weak) to transform ∆ and Θ1 to \(∆,Θ1);
same for Ψ and Θ2. We can then use (\contr) to eliminate double occurrences
of formulas in ∆,Θ1 and Ψ,Θ2 respectively.

For (subst), consider the following proof:

Γ [Ψ ]

Γ [Ψ,♦(∆;Ψ ;∆′)]
(\weak)

Γ [♦(∆;β;∆′)]

Γ [♦(∆; \(β, Ψ);∆′)
(\weak)

Γ [♦(∆;Ψ ;∆′)]
(inter2)

�
In fact, in the presence of (\contr) the two rules (distr) and (subst) are

easily shown to be equivalent to (inter1),(inter2). They have the advantage
that they are conceptually slightly simpler, and we now see what their main
use is: assume we have proofs cf Θ ` Γ [♦(α;β; γ), cf Θ ` Γ [δ]. Then
obviously we can prove cf Θ ` Γ [(α‖β‖γ) ∧ δ]; to satisfy distributive laws,
we have to be able to prove cf Θ ` Γ [(α ∧ δ)‖(β ∧ δ)‖(γ ∧ δ)]. Finally, to
ensure invertibility, we have to be able to prove cf Θ ` Γ [α‖(β ∧ δ)‖γ] etc.
To prove this sequent from our premises, we need (inter2) (or alternatively,
(subst)).

The main problem of (distr) and (subst) is that they are both not invert-
ible themselves. In particular the rule (subst) is very problematic for proof
search, as the set of possible premises is infinite, but (contrary to (inter2))
the derivability of the conclusion does not guarantee the derivability of a
possible antecedent. Moreover, we conjecture that the calculus with (subst)
and (distr) instead of (inter1),(inter2) does not allow for the admissibility of
(\contr), hence our formulation seems preferable. We will however use the rules
(distr),(subst) from time to time if it makes proofs more conspicuous.

The following rules are slightly stronger inversions of the rule (distr).

(distr1)

Γ [♦(\(∆,Θ);Ψ)]

Γ [\(♦(∆;Ψ), Θ)] (distr2)

Γ [♦(∆; \(Ψ,Θ))]

Γ [\(♦(∆;Ψ), Θ)]

In these rules, we move a context out of the scope of an ambiguous context,
for which we have to distinguish two cases (as ambiguity is – for now – not
commutative). The following lemma shows that these rules are admissible in
our calculus.
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Lemma 37

1. Assume ncf Γ [♦(\(∆,Θ);Ψ)] ` Ξ. Then ncf Γ [\(♦(∆;Ψ), Θ)] ` Ξ.
2. Assume ncf Ξ ` Γ [♦(\(∆,Θ);Ψ)]. Then ncf Ξ ` Γ [\(♦(∆;Ψ), Θ)].

This only proves the claim for (distr1), but the parallelism with (distr2) is
so obvious that we assume we can omit even the statement.
Proof. We only prove 1., as 2. is completely parallel. We make an induction
over n: the induction base is clear, because (ax) is based on a single formula not
within the scope of ♦, hence this formula is not affected by the re-arrangement.

Now assume the claim holds for some n ∈ N. We prove it holds for n + 1
by case distinction as to which was the last rule applied in the derivation,
followed by (distr1) or (distr2). For rules introducing connectives, this is a
plain standard argument. Now assume we have a derivation

Γ1, Γ2, Λ ` ∆,Ψ Θ,Λ ` Φ, Ψ
♦(\(Γ1, Γ2);Θ), Λ ` ♦(∆;Φ), Ψ

(I♦I)

♦(Γ1;Θ), Γ2, Λ ` ♦(∆;Φ), Ψ
(distr1)

Then we can also derive

Γ1, Γ2, Λ ` ∆,Ψ
Θ,Λ ` Φ, Ψ

Θ, Γ2, Λ ` Φ, Ψ
(\weak)

♦(Γ1;Θ), Γ2, Λ ` ♦(∆;Φ), Ψ
(I♦I)

and by the n-admissibility of weakening, the derivation length does not in-
crease, hence the claim follows in this case. (♦I),(I♦) are similar. (inter1) is
straightforward: since (distr1) and (distr2) are weaker inverses of the rules
(modulo weakening and contraction), the rules can be easily commuted. The
exchanging of the rule (inter2) followed by an arbitrary instance of (distr1),
(distr2) is also an easy exercise. �

Corollary 38 The rules (distr1),(distr2) are admissible in ALcf .

5.2.3 Contraction in classical context

We now consider contraction in classical context.

Lemma 39 If ncf Γ [\(∆,∆)] ` Θ, then ncf Γ [\(∆)] ` Θ.

Proof. We make the usual induction over n, where we distinguish cases ac-
cording to the last rule applied in the proof. The classical rules do not pose
problems; reductions are well known, the rules (I♦I),(♦I),(I♦) are obviously
formulated in a way to make contraction admissible. So we only consider some
critical rules; moreover, we omit the symbol ` in proofs if the proofs works
equally on both sides.

Γ [\∆,Ψ,∆]

Γ [\∆,∆, Ψ ]
\(comm)

Γ [\∆,Ψ ]
(\contr)

=⇒

Γ [\∆,Ψ,∆]

Γ [\∆,Ψ,∆, Ψ ]
(\weak)

Γ [\∆,Ψ ]
(\contr)



Reasoning with Ambiguity 41

By the n-admissibility of weakening, this shortens the proof, hence the claim
follows.

(inter1),(inter2) are also obviously formulated in a way such that any in-
stance of them, followed by (\contr), can be easily commuted.

‖-introduction rules are unproblematic, because we use contraction of con-
texts rather than formulas: hence instead of contracting α‖β, we can equally
well contract ♦(α;β). This finishes the proof, though we omit of course many
unproblematic cases. �

We omit the parallel lemma for the right-hand side, as everything is com-
pletely parallel.

Corollary 40 (\contr) is admissible in ALcf .

5.2.4 Expansion in ambiguous context

There is a dual rule to (♦contr), expansion in ambiguous context:

(♦exp)

Γ [∆]

Γ [♦(∆;∆)]

This is again a shorthand for two rules, and in a sense a special case of weaken-
ing (which is not admissible in ambiguous context). It obviously corresponds,
together with (♦contr), to the idempotence of ambiguity.

Lemma 41 (♦exp) is admissible in ALcf .

Proof. We prove this once more by induction over derivations, distinguishing
cases as to the previous rule. We have to take care of the induction hypothesis:

α, Γ ` α,∆
♦(α;α), Γ ` α,∆

(♦exp)
can be replaced by

α, Γ ` α,∆ α, Γ ` α,∆
♦(α;α), Γ ` α,∆

(I♦I)

Consider ¬-introduction rules:

Γ ` ∆,α
¬α, Γ ` ∆ (¬I)

♦(¬α;¬α), Γ ` ∆
(♦exp)

This can be re-arranged to

Γ ` ∆,α
¬α, Γ ` ∆ (¬I)

Γ ` ∆,α
¬α, Γ ` ∆ (¬I)

♦(¬α;¬α), Γ ` ∆
(I♦I)

This way, (♦exp) can be discarded altogether. For all other rules, it is easy
to see how (♦exp) can be moved upwards in the proof. �
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5.2.5 Contraction in ambiguous context

The rule (♦contr) is now easy to show admissible; in fact, it is even derivable
by a sequence of (distr1) and (\contr); this is because we always have the
empty context \() at our disposition.

Γ [♦(∆;∆)] ` Ξ
Γ [♦(\(\(), ∆);∆)] ` Ξ

(\weak)

Γ [\(♦(\();∆), ∆)] ` Ξ
(distr1)

Γ [\(∆,∆)] ` Ξ
(notation)

Γ [∆] ` Ξ
(\contr)

Hence we remain with but one rule in ALcf which is problematic for proof
search, namely (inter2).

Lemma 42 (♦contr) is admissible in ALcf .

5.2.6 Invertibility

A crucial property of proof systems is their invertibility: if a sequent Γ ′ ` ∆′
can be derived from Γ ` ∆, then if the former is derivable, so is the latter
(same for several premises). Invertibility of rules is often straightforward to
prove; for us, invertibility is one main reason we have the problematic rule
(inter2). We now present the results on invertibility:

Lemma 43 (Invertibility Lemma)

1. If cf Γ [α‖β] ` ∆, then cf Γ [♦(α;β)] ` ∆.
2. If cf ∆ ` Γ [α‖β], then cf ∆ ` Γ [♦(α;β)].
3. If cf ∆ ` Γ [α ∧ β], then  ∆ ` Γ [α] and cf ∆ ` Γ [β].
4. If cf Γ [α ∨ β] ` ∆, then cf Γ [α] ` ∆ and cf Γ [β] ` ∆
5. If ALcf ∆,¬α ` Γ , then cf ∆ ` Γ, α.
6. If ALcf ∆ ` Γ,¬α, then cf ∆,α ` Γ .

Proof. All claims are straightforward by rule formulation. Formally, they can
be proved by induction over proof length, and exchanging the critical rule with
the previous ones, which works fine in all cases. �

5.3 Admissible rules II: Cut and restricted cut rules

The following important result is actually straightforward to prove now:

Theorem 44 The rule (cut) is not admissible in AL, put differently, there are
sequents which are derivable in AL, but not in ALcf .

Recall that we let 1 stand for an arbitrary classical tautology, 0 a classical
contradiction.
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Proof. By completeness, we know that AL 1 ` ♦(1; 0; 1). This sequent is
not derivable in ALcf , because ALcf+comm , which is ALcf with (♦comm), is a
conservative extension of classical logic (see Lemma 49) and if the sequent was
derivable, we would also be able to derive 1 ` ♦(0; 1; 0) ` 0 (using the usual
methods), hence 1 ` 0 – contradiction. �

There is however a weaker cut-rule which is admissible, namely cut where
the cut-formula is unambiguous and in unambiguous context. This means we
have a sort of “Boolean transitivity”. The argument for this is standard (reduc-
tion of cut-degree). The rules where this procedure of reduction does not work
are actually (‖I),(I‖) inside the cut-formula, and the cut-formula in ambiguous
context. But if we exclude them by definition, the cut remains admissible:

(classic cut)

∆ ` α,Θ Γ, α ` Ψ
Γ,∆ ` Ψ,Θ , where α is a formula of CL

Lemma 45 In ALcf , the rule (classic cut) is admissible.

Proof. Basically, one can reproduce the classical proof for cut-elimination. ♦
and ‖ will be unproblematic in side formulas, the only place where they have
to be considered. �

This result is not as uninteresting as it might seem, given the importance
ALcf will have for us. There is another restricted cut rule which does not
restrict the cut-formula, but the context to the identity context. This rule cor-
responds to transitivity of consequence and will be called (trans) accordingly.

(trans)
Γ ` θ θ ` ∆

Γ ` ∆

Lemma 46 In ALcf , the rule (trans) is not admissible.

Proof.

Straightforward

♦(a ∨ (¬a‖¬b); b ∨ (¬a‖¬b)) ` ♦(\(a,♦(¬a;¬b)); \(b,♦(¬a;¬b)))

♦(a; b) ` ♦(a; b)

` ♦(a; b),♦(¬a;¬b)
(I¬)

` ♦(a; b),¬a‖¬b
(‖I)

1 ` ♦(a; b),¬a‖¬b
(\weak)

1 ` ♦(\(a, (¬a‖¬b)); \(b,¬a‖¬b))
(distr)

1 ` ♦(a ∨ (¬a‖¬b); b ∨ (¬a‖¬b))
(I∨)× 2

1 ` ♦(\(a,♦(¬a;¬b); \(b,♦(¬a;¬b)))
(trans)

1 ` ♦(♦(\(¬a, a); \(¬b, a);♦(\(¬a, b); \(¬b, b)))
(distr), (\comm)

1 ` ♦(♦(¬a ∨ a;¬b ∨ a);♦(¬a ∨ b;¬b ∨ b))
(I∨)

1 ` (¬a ∨ a)‖(¬b ∨ a)‖(¬a ∨ b)‖(¬b ∨ b)
(‖)

Given this proof, we can assume as a special case that a = 0, b = 1:
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1 ` (¬0 ∨ 0)‖(¬1 ∨ 0)‖(¬0 ∨ 1)‖(¬1 ∨ 1)

(¬0 ∨ 0) ` 1 (¬1 ∨ 0)‖(¬0 ∨ 1)‖(¬1 ∨ 1) ` 0‖1
♦((¬0 ∨ 0); (¬1 ∨ 0)‖(¬0 ∨ 1)‖(¬1 ∨ 1)) ` ♦(1; 0‖1)

(I♦I)

(¬0 ∨ 0)‖(¬1 ∨ 0)‖(¬0 ∨ 1)‖(¬1 ∨ 1) ` 1‖0‖1
(‖I)

1 ` 1‖0‖1
(trans)

The sequent 1 ` 1‖0‖1 is however not derivable in ALcf , for then the
calculus with (♦comm) would be inconsistent (see Lemma 33). �

Hence in general, ALcf does not even allow for transitivity of inference;
but for unambiguous formulas in unambiguous context (that is, not embedded
within the scope of ♦), we can allow cut. This entails that transitivity of
inference does not hold in general, but in special cases: if ALcf Γ ` α, ALcf

α ` ∆, and α is a formula of CL, then ALcf Γ ` ∆.

5.4 Decidability

Lemma 47 AL is decidable, that is, we can decide whether AL Γ ` ∆ for
arbitrary Γ,∆.

Proof. This follows from completeness; in fact, Corollary 23 entails the stronger
claim that the problem is NP-complete. �

For ALcf , we leave this problem open:

Conjecture 1 ALcf is decidable, that is, we can decide whether ALcf Γ ` ∆
for arbitrary Γ,∆.

There is only one rule which remains problematic for proof search in the
calculus, namely (inter2). However, we do not see how this can be dispensed
with without losing invertibility, which is a crucial feature both for proof-
theory and semantics of the cut-free calculus.

6 Cut-free ALcf and the main hypothesis

6.1 The main hypothesis

The results of the last sections strongly indicate that AL with cut is not a good
model to reason with ambiguity, despite the fact that all axioms of UDA and
all inference rules of AL agree with our intuitions. How does this go together?
As we said, logically speaking, the problem lies in the cut rule, and alge-
braically speaking, the problem is the fact that our semantics is congruent,
that is, we can always substitute equivalents preserving the truth of equalities.
Being congruent is actually the core of being algebraic, so if we dismiss this
feature, we should be careful in motivating this, explaining what this means,
and formalizing this intuition. Firstly, we formulate our main hypothesis:
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Conjecture 2 (Main hypothesis) Under the assumption of consistent usage,
if a sequent α ` β is derivable in ALcf , then the inference is intuitively sound.
Moreover, every intuitively sound inference with ambiguous propositions can
be derived by cut-free ALcf .

This is basically the main conceptual claim we make in this article, but
we moderate it immediately: firstly, the hypothesis cannot be proved, it can
only be falsified by deriving some intuitively unsound sequent, or showing that
some intuitively sound sequent is not derivable. So we use this as a benchmark,
hoping that by trying to falsify this hypothesis we will further our understand-
ing of reasoning with ambiguity. Our motivation for this hypothesis is mostly
empirical, given the previous results and the fact that for all counter-intuitive
results we considered, we actually do need the cut rule to derive them.

How can we best explain the fact that the calculus closest to our intuition
should be one without cut and without algebraic semantics (which obviously
subsumes truth-functional semantics)? In our view, the main point is that am-
biguity is something on the border between syntax and semantics. We have
pointed out the parallelism between syntax and semantics, which is accounted
for by universal distribution. Having the laws of universal distribution al-
lows us to transfer ambiguity from syntax to semantics. Incongruence, on the
other hand, is maybe the price we have to pay for this, as even semantically,
there remains something syntactic to ambiguity: the syntactic form of formu-
las matters beyond mutual derivability, hence the same must hold for terms in
semantics. This is exactly the core of incongruence: the fact that two formulas
are inferentially equivalent (usually written α a` β) does not entail that we
can substitute one for the other in all contexts (which we will write α ≡ β).

Incongruence is something which cannot be captured algebraically, hence
we will have to look for an alternative semantics for ALcf . We will present
a matrix-style semantics for the cut-free calculus, which is based on strings,
where each string can be thought of as a sort of ambiguous normal form. This
section is structured as follows: Firstly, we will explore the main hypothesis
and sketch why it is plausible according to us. Then we will present the ma-
trix semantics of ALcf and prove its soundness and completeness. Finally, we
will ponder about what it means and what we can learn for reasoning with
ambiguity.

6.2 Cut-free AL: Evidence for the main hypothesis

The main hypothesis cannot be mathematically proved, but we can gather
some support for it. The hypothesis falls into two parts we might call soundness
and completeness. The soundness part states: If a sequent is derivable in ALcf ,
then it is intuitively correct. This part is easier to grasp, once we have an
intuition on what multi-sequents and inference rules mean, we can just use
the usual induction over rules. Since this might be considered unsatisfying in
hindsight of the counterintuitive results we obtained before, we will establish
the following result. Recall that ALcomm is the calculus AL enriched with the
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rule (♦comm), we let ALcf+comm be the corresponding calculus without cut. As
we showed before, ALcomm is inconsistent, that is, every sequent is derivable.
Recall that we let 0, in the context of our logic, stand for an arbitrary classical
contradiction. We now show the following:

Lemma 48 ALcf+comm is consistent, that is, 6ALcf+comm 0.

Proof is straightforward, as in the cut-free calculus, to derive 0, we can
only use classical rules, as there is no possibility to eliminate ambiguity once
it is introduced. Actually, by the same argument we can easily conclude the
following:

Lemma 49 ALcf+comm is a conservative extension of CL, that is, it derives
the same sequents in the classical language.

It is hard to gather evidence for the “completeness direction” of the main
hypothesis, namely that all valid inferences with ambiguous terms are derivable
with ALcf . We can however show that a number of properties hold which we
would like to hold; these mostly regard the congruence of formulas. Recall
that formulas, as terms, have ambiguous normal forms, which however are not
unique. We let anf (φ) denote the set of ambiguous normal forms of φ. In
the following we consider formulas only up to bracketing for ‖; hence we treat
all formulas of the form α1‖...‖αi, with arbitrary bracketing, as equivalent.

Definition 50 We define anf (φ) syntactically by

– anf (p) = {p}, for p ∈ Var
– anf (¬φ) = {(¬α1)‖...‖(¬αi) : α1‖...‖αi ∈ anf (φ)}
– anf (φ ∧ ψ) =

{γ1‖...‖γi : (∃(α1‖...‖αi) ∈ anf (φ)).(∀j ∈ {1, ..., i}).γj ∈ anf (αj ∧ ψ)}
∪ {γ1‖...‖γi : (∃(β1‖...‖βi) ∈ anf (ψ)).(∀j ∈ {1, ..., i}).γj ∈ anf (φ ∧ βj)}

– anf (φ ∨ ψ) =
{γ1‖...‖γi : (∃(α1‖...‖αi) ∈ anf (φ)).(∀j ∈ {1, ..., i}).γj ∈ anf (αj ∨ ψ)}

∪ {γ1‖...‖γi : (∃(β1‖...‖βi) ∈ anf (ψ)).(∀j ∈ {1, ..., i}).γj ∈ anf (φ ∨ βj)}
– anf (φ‖ψ) = {α1‖...‖αi‖β1‖...‖βj : α1‖...‖αi ∈ anf (φ), β1‖...‖βj ∈ anf (ψ)}

It is easy to see that α ∈ anf (β) for some β if and only if α = α1‖...‖αi,
where α1, ..., αi are classical. Note that we define this concept by iterating
distribution rules on formulas, hence in particular without reference to any
proof theory or semantics. Hence (p ∧ r)‖(q ∧ r) ∈ anf ((p‖q) ∧ r), but (r ∧
p)‖(q ∧ r) /∈ anf ((p‖q)∧ r), since ∧-commutation is not part of the definition!

We now come to another crucial concept. In a cut-free calculus, we have to
distinguish two concepts: one is ` with reflexive closure a`, which is mutual
derivability. The other (and probably more important) concept is the following:

Definition 51 We write α 5 β iff i. cf Γ [β] ` ∆ entails cf Γ [α] ` ∆ and
ii. cf ∆ ` Γ [α] entails cf ∆ ` Γ [β]. We let ≡ denote the reflexive closure
of 5.
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In a cut-free calculus, ≡ is the largest congruence on formulas which respects
derivable sequents. Note that both 5 and ≡ are transitive relations, and ≡ is
an equivalence relation. What is particularly interesting for our “completeness
direction” of the main hypothesis is not derivability but rather congruence of
certain formulas; hence 5 is more interesting than `.12 We will also need the
following: we write Θ ≡l Θ′ if cf Γ [Θ] ` ∆ iff cf Γ [Θ′] ` ∆, and Θ ≡r Θ′
if cf ∆ ` Γ [Θ] iff cf ∆ ` Γ [Θ′]. The following is obvious yet important:

Lemma 52 For every multi-sequent Γ , there are formulas γl, γr, such that
γl ≡l Γ and γr ≡r Γ .

Proof. For one direction, use introduction rules, for the other their invertibil-
ity. �

The following lemmas are particularly important:

Lemma 53 In ALcf , it holds that φ ∧ χ 5 φ‖χ 5 φ ∨ χ.

Proof. We only prove φ ∧ χ 5 φ‖χ, the proof for φ‖χ 5 φ ∨ χ is exactly
parallel. The proof for φ ∧ χ 5 φ‖χ has two subparts.
i. cf ∆ ` Γ [φ ∧ χ] implies cf ∆ ` Γ [φ‖χ].

By (♦exp), cf ∆ ` Γ [φ ∧ χ] implies cf ∆ ` Γ [♦(φ ∧ χ;φ ∧ χ)]. By
the invertibility of (I∧), it follows that cf ∆ ` Γ [♦(φ;χ)], hence cf ∆ `
Γ [♦(φ‖χ)]
ii. cf Γ [φ‖χ] ` ∆ implies cf Γ [φ ∧ χ] ` ∆.
cf Γ [φ‖χ] ` ∆ implies cf Γ [♦(φ;χ)] ` ∆ by Lemma 43. Now consider

the following proof:

Γ [♦(φ;χ)] ` ∆
Γ [♦(\(φ, χ); \(φ, χ))] ` ∆

(\weak)× 2

Γ [♦(φ ∧ χ;φ ∧ χ))] ` ∆
(∧I)

Γ [φ ∧ χ] ` ∆
(♦contr)

�
Hence we preserve the properties of inference between ambiguous and un-

ambiguous formulas (as stated by (inf) in UDA).

Lemma 54 For all formulas α, we have α ≡ ¬¬α.

Proof. This is most easy to prove by induction over the proof length; the exact
claim is: there is a proof of length n for Γ [α] ` ∆, if and only if there is a proof
of length ≤ n+ 2 for Γ [¬¬α] ` ∆. Induction base is clear, and induction step,
distinguishing rules, is straightforward, provided the invertibility lemma. �

Lemma 55 In ALcf , for arbitrary formulas α, β, γ, we have

1. ¬(α‖β) ≡ ¬α‖¬β
2. α ∧ (β‖γ) ≡ (α ∧ β)‖(α ∧ γ)

12 To give a comparison we find very useful: for an incongruent calculus as ours, results
on ≡ and 5 play a role which might be compared to the role a metalogical result as the
Deduction Theorem plays in a Hilbert calculus
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3. α ∨ (β‖γ) ≡ (α ∨ β)‖(α ∨ γ)

Proof. 1. ¬
= Assume we have a proof Γ [¬(α‖β)] ` ∆. Then at some point, we have

introduced the negation by (¬I) in the subproof(s). Hence we had one (or
several) proofs

Ψ ` Λ,♦(γ1; ...; γi;α‖β; γi+1; ...; γn)

Ψ,♦(¬γ1; ...;¬γi;¬(α‖β);¬γi+1; ...;¬γn) ` Λ
(¬I)

By invertibility, we also have a proof for Ψ ` Λ,♦(γ1; ...; γi;α;β; γi+1; ...; γn);
hence we can prove

Ψ ` Λ,♦(γ1; ...; γi;α;β; γi+1; ...; γn)

Ψ,♦(¬γ1; ...;¬γi;¬α;¬β;¬γi+1; ...;¬γn) ` Λ
(¬I)

Ψ,♦(¬γ1; ...;¬γi;¬α‖¬β;¬γi+1; ...;¬γn) ` Λ
(‖I)

From here, the proof can proceed as before, as we do not make any reference
to formula structure in the calculus. Same on the right-hand side.
5 Assume we have Γ [¬α‖¬β] ` ∆. This case is more complicated, since

we have to distinguish cases as to which was the rule by which the formula
was introduced.

Case 1: We had a proof

Γ ` ∆,♦(γ1; ...;α;β; ...; γi)

Γ,♦(¬γ1; ...;¬α;¬β; ...;¬γi) ` ∆
(¬I)

This case is easy, we re-arrange the proof to

Γ ` ∆,♦(γ1; ...;α;β; ...; γi)

Γ ` ∆,♦(γ1; ...;α‖β; ...; γi)
I(‖)

Γ,♦(¬γ1; ...;¬(α‖β); ...;¬γi) ` ∆
(¬I)

.

Same on the right-hand side.
Case 2: We had a proof

Γ,¬α ` ∆′ Γ,¬β ` ∆′′

Γ,♦(¬α;¬β) ` ∆
(I♦I)

Γ,¬α‖¬β ` ∆
(‖I)

Then by invertibility,we have cf Γ ` ∆′, α and cf Γ ` ∆′′, β. Now we can
use (I♦) to get a proof

Γ ` ∆′, α Γ ` ∆′′, β
Γ ` ∆,♦(α;β)

(I♦)

Γ ` ∆,α‖β
(‖)

Γ,¬(α‖β) ` ∆
(¬I)

Here the claim follows, and parallel on the right hand side.
Case 3: We had a proof
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Γ ′,¬α ` ∆ Γ ′′,¬β ` ∆
Γ,♦(¬α;¬β) ` ∆

(♦I)

Γ,¬α‖¬β ` ∆
(‖I)

Then by invertibility we have cf Γ
′ ` ∆,α and cf Γ

′′ ` ∆,β. Now we can
apply (I♦I) to obtain `cf Γ `, ∆,♦(α;β), and we proceed as obvious.

2. ∧
5 Assume we have a proof for Γ [α ∧ (β‖γ)] ` ∆. Then we have cf

Γ [\(α,♦(β; γ))] ` ∆. Now we can use the (admissible) rule (distr) to derive

cf Γ [♦(\(α, β); \(α, γ))] ` ∆

and the claim follows.
For the right hand side, assume cf ∆ ` Γ [(α ∧ β)‖(α ∧ γ)], whence cf

∆ ` Γ [♦(α;α)] and cf ∆ ` Γ [♦(β; γ)]. By (♦contr) we obtain cf ∆ ` Γ [α],
by (‖I) cf ∆ ` Γ [β‖γ], and with (I∧) we derive cf ∆ ` Γ [α ∧ (β‖γ)].
= Assume cf Γ [(α ∧ β)‖(α ∧ γ)] ` ∆. Then by invertibility, we have cf

Γ [♦(\(α, β)); \(α, γ))] ` ∆ We use the admissibility of (distr1) and (distr2):
we derive cf Γ [♦(β; \(α, γ)), α] ` ∆ and cf Γ [♦(β; γ)), α, α] ` ∆. With
(\contr), we can derive cf Γ [♦(β; γ)), α] ` ∆, hence the claim follows.

For the right hand side, assume cf ∆ ` Γ [α ∧ (β‖γ)]. Then we have
cf ∆ ` Γ [α], cf ∆ ` Γ [♦(β; γ)]. Then we can use (subst) and (I∧) to derive
cf ∆ ` Γ [♦(α ∧ β; γ)] and then cf ∆ ` Γ [♦(α ∧ β;α ∧ γ)].

3. ∨ Parallel to ∧. �
To prove the following crucial lemma, we need to define a slightly odd

measure of formula complexity c : WFF→ N.

– c(p) = 0, for p ∈ Var
– c(α‖β) = c(α) + c(β) + 1
– c(¬α) = 2 · c(α) + 1
– c(α ∧ β) = c(α) · c(β) + 1
– c(α ∨ β) = c(α) · c(β) + 1

This is to account for the fact that distributing ¬,∧,∨ over ‖ can significantly
increase formula complexity in terms of number both of connectives and vari-
ables. On the contrary, simple arithmetics tells us that c((α ∧ γ)‖(β ∧ γ)) <
c((α‖β) ∧ γ) etc. An easy induction then yields that

(25) for all α′ ∈ anf (α), we have c(α′) ≤ c(α)

This is important in the following proof, where we often substitute formulas
by their ambiguous normal forms.

Lemma 56 (ANF Lemma) In ALcf , for all φ ∈ WFF and all χ ∈ anf (φ) we
have φ ≡ χ.

Proof. Induction over c(φ). The base case is clear, since c(φ) = 0 entails
p ∈ Var . Assume the claim holds for all formulas with complexity ≤ n, and
the complexity of φ is n+ 1.
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1. φ = α‖β Assume Γ [α‖β] ` ∆. Then Γ [♦(α;β)] ` ∆. By induction
hypothesis, Γ [♦(α′, β′)] ` ∆ for all α′ ∈ anf (α), β′ ∈ anf (β). By definition,
every γ ∈ anf (α‖β) has the form α′‖β′, with α′ ∈ anf (α), β′ ∈ anf (β). Invert
the argument for the other direction, and the same on the right-hand side.

2. φ = ¬α Assume Γ [¬α] ` ∆ Case 1: α does not contain ‖. Then ¬α is its
only normal form and the claim follows. Case 2: α contains ‖. Then we trace
back in the proof to the point where the negation was introduced; there we can
by induction hypothesis replace α by α′ ∈ anf (α), where α′ = α1‖α2. Hence for
arbitrary α1‖α2 ∈ anf (α), we have Γ [¬(α1‖α2)] ` ∆. By the previous lemma,
we then have Γ [¬α1‖¬α2] ` ∆, by invertibility we have Γ [¬α1;¬α2] ` ∆. We
can apply the induction hypothesis to ¬α1,¬α2 because of (25). Invert the
argument for the other direction, and similar on the right-hand side.

3. φ = α ∧ β Assume Γ [α ∧ β] ` ∆. Then Γ [\(α, β)] ` ∆. By induction
hypothesis, we can substitute and obtain Γ [\(α′, β′)] ` ∆ for arbitrary α′ ∈
anf (α), β′ ∈ anf (β).

Case 1 Assume α′ = α′1‖α′2. Then by the previous lemma, Γ [\(♦(α′1 ∧
β′;α′2 ∧ β′)] ` ∆. (25) then entails that c(α′1 ∧ β′) ≤ n and c(α′2 ∧ β′) ≤ n,
hence by induction hypothesis they can be replaced by any of their ambiguous
normal forms.

Case 2 Assume β′ = β′1‖β′2. This is parallel to case 1, and of course the
two cases can overlap (are not exclusive).

Case 3 α, β are both classical. Then anf (α∧β) = {α∧β}, hence this case
is trivial.

This covers all ambiguous normal forms; and the argument works equally
in the other direction.

For the right hand side, assume ∆ ` Γ [α∧β]. Then we have ∆ ` Γ [α], ∆ `
Γ [β], hence ∆ ` Γ [α′], ∆ ` Γ [β′] for arbitrary α′ ∈ anf (α), β′ ∈ anf (β). Then
we use Lemma 55 and the claim follows easily from the induction hypothesis.
The argument works in the other direction as well.

4. φ = α ∨ β Parallel. �

Hence every formula is congruent to all of its ambiguous normal forms, as
it should by universal distribution. This means among other that if anf (α) ∩
anf (β) 6= ∅ 6= anf (β) ∩ anf (γ), then α ≡ γ, as congruence is an equivalence
relation (hence transitive).

With the rules we have established, it is easy to derive the following
law of disambiguation: for every i, 1 ≤ j ≤ i, ALcf (φ1‖...‖φi) ∧ ¬φj `
φ1‖...‖φj−1‖φj+1‖...‖φi. We would like to show a stronger result, namely that
this can be strengthened to 5, which is to say, disambiguation can be applied
in arbitrary contexts. This corresponds to the following rules of left/right dis-
ambiguation, which we will prove to be admissible:
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(disamb I)

Γ [♦(∆1;∆2] ` Θ ∆,∆ `
Γ [♦(∆1;∆;∆2),∆] ` Θ 13

(I disamb)

Θ ` Γ [♦(∆1;α;∆2)] Θ ` Γ [α] α, α `
Θ ` Γ [♦(∆1;∆2)] , with α, α classical

These rules are not dual to each other: (disamb I) introduces arbitrary con-
texts, (I disamb) eliminates classical formulas. Each of the two has a separate
dual which we omit as it is less immediate to disambiguation. To prove their
admissibility we need two auxiliary lemmas.

Lemma 57 Assume ξ is formula of classical logic.

1. If cf ξ ` and cf Γ ` ∆, ξ, then cf Γ ` ∆.
2. If cf ` ξ and cf Γ, ξ ` ∆, then cf Γ ` ∆.

Hence we can eliminate classical contradictions on the right, classical the-
orems on the left of `. This will also have some relevance in matrix semantics.
Proof. Just consider that (26),(27) are both instances of admissible (classic
cut), with exchanged order of premises.

Γ ` ∆, ξ ξ `
Γ ` ∆ , with ξ classical(26)

` ξ Γ, ξ ` ∆
Γ ` ∆ , with ξ classical(27)

�

Lemma 58

1. Assume cf Γ [♦(∆;∆′)] ` Θ and cf Ξ `. Then cf Γ [♦(∆;Ξ;∆′)] ` Θ
2. Assume cf Θ ` Γ [♦(∆;∆′)] and cf ` Ξ. Then cf Θ ` Γ [♦(∆;Ξ;∆′)]

Proof. We make an induction over n in ncf , simultaneously for both 1. and
2., so we cover negation rules. The most difficult case is the base case: assume
1

cf α, Γ ` α,Θ.
1.: Case 1 Assume ♦(∆;∆′) is a subterm of Γ . As Γ is arbitrary, the claim

follows immediately.
Case 2 Assume ∆ := α (hence ∆′ = \()) Then we prove

α, Γ ` α,Θ
Ξ `

Ξ,Γ ` α,Θ
(\weak)

♦(α;Ξ), Γ ` α,Θ
(I♦I)

Case 3 α = ∆′ is parallel.
2. is parallel.
Now we come to the induction step. Assume the claim holds for some

n; we make a case distinction as to the last rule applied. Basically all cases

13 We use the notation ∆ without any meaning, just to indicate ∆,∆ are inconsistent;
same with α, α.
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are straightforward except for (¬I),(I¬), if they are applied to the context
♦(∆;∆′). However, here the claim follows from the fact the we perform the
induction simultaneously for both claims, and a contradiction is the negation
of a theorem and vice versa. �

Corollary 59 (disamb I) is admissible in ALcf .

Proof. If cf Γ [♦(∆1;∆2)] ` Θ and cf ∆,∆ ` hold, then
cf Γ [♦(∆1; \(∆,∆);∆2)] ` Θ by Lemma 58, and by iterated (distr1),(distr2),
we obtain cf Γ [♦(∆1;∆;∆2),∆] ` Θ. �

Corollary 60 (I disamb) is admissible in ALcf .

Proof. Consider the following proofs:

Θ ` Γ [♦(∆1;α;∆2)]

Θ ` Γ [♦(∆1;∆2)], α
(distr1/2)

Θ ` Γ [α]

Θ ` Γ [♦(∆1;∆2), α]
(\weak)

Θ ` Γ [♦(∆1;∆2)], α
(distr1/2)

We can then prove Θ ` Γ [♦(∆1;∆2)], α ∧ α, and since cf α ∧ α ` by
one premise, where α ∧ α is classical, by Lemma 57 it follows that cf Θ `
Γ [♦(∆1;∆2)]. �

Corollary 61 For every i, 1 ≤ j ≤ i, where φj is classical, (φ1‖...‖φi)∧¬φj 5
φ1‖...‖φj−1‖φj+1‖...‖φi

Proof. To prove that Γ [φ1‖...‖φj−1‖φj+1‖...‖φi] ` Θ entails Γ [(φ1‖...‖φi) ∧
¬φj ] ` Θ, use invertibility of (‖I) and (disamb I).

To prove thatΘ ` Γ [(φ1‖...‖φi)∧¬φj ] entailsΘ ` Γ [φ1‖...‖φj−1‖φj+1‖...‖φi],
use invertibility of (I‖) and (I disamb). �

There is a dual result stating that φ1‖...‖φj−1‖φj+1‖...‖φi 5 (φ1‖...‖φi) ∨
¬φj , provable by the dual rules of the ones we presented. This would be co-
disambiguation. Of course, there are many more rules one could consider inter-
esting and important, but we think that beyond these crucial ones, the choice
would become arbitrary. What we consider most important is that for many
critical properties of ambiguity, mostly regarding distributive laws, we actually
have congruence of formulas representing (arguably) congruent meanings.

We hope that these results will have convinced the reader that ALcf is a
powerful logic for reasoning with ambiguity. Having established these results,
we will now provide it with a rather simple and natural semantics. This will of
course not be algebraic or set-theoretic, as these are excluded by incongruence.
It could rather be qualified as language-theoretic, as we interpret formulas and
sequents as (sets of) strings, where every string corresponds to an ambiguous
normal form.

6.3 Matrix semantics for ALcf

We now present a semantics for cut-free ALcf , which is based on matrix
semantics; we adapt the definition of a Gentzen matrix from (Galatos
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et al., 2007, chapter 7). We define an ambiguity matrix as a structure (A,�),
where A = (A,∧,∨,∼, 0, 1) is an arbitrary algebra (hence not necessarily a
Boolean algebra!) of the signature of Boolean algebras, and �⊆ A∗×A∗, where
A∗ denotes the set of finite strings over A, including the empty string ε; A+

denotes the set of non-empty strings. In this section, we will use the convention
that letters a, b, c, d, ... are used for letters in A, whereas letters u, v, w, x, y, z
are used for strings in A∗. Before we define �, we have to introduce some
important shorthands: for w, v ∈ A+, a ∈ A, w ∧ a, w ∨ a, w ∧ v, w ∨ v, ∼w
are not defined: importantly, pseudo-Boolean operations are only defined for
letters in A, not strings! But we still use terms over strings as a shorthand, by
the following string abbreviations:

(b1...bi) ∧ a := (b1 ∧ a)...(bi ∧ a) a ∧ (b1...bi) := (a ∧ b1)...(a ∧ bi)
(b1...bi) ∨ a := (b1 ∨ a)...(bi ∨ a) a ∨ (b1...bi) := (a ∨ b1)...(a ∨ bi)
w ∧ v :=

⋃
w=w1w2

{(w1 ∧ v)(w2 ∧ v)} ∪
⋃

v=v1v2

{(w ∧ v1)(w ∧ v2)}

w ∨ v :=
⋃

w=w1w2

{(w1 ∨ v)(w2 ∨ v)} ∪
⋃

v=v1v2

{(w ∨ v1)(w ∨ v2)}

∼(a1...ai) := (∼ai)...(∼ai)
The definitions of w ∧ v and w ∨ v require that w1, w2, v1, v2 ∈ A+; this

ensures that at some point we will have a term which is well-defined by lines
one and two, like w ∧ a etc. Hence w ∨ v and w ∧ v are defined inductively.
The representation axioms below will ensure that all members of these sets
are congruent, that is, exchangeable in all contexts. As a result, we can use
all pseudo-Boolean operations on arbitrary words in A+; but it is important
to keep in mind that they are abbreviations for operations which are defined
only for letters in A itself, and operations are not necessarily Boolean. The
relation � has to satisfy a number of conditions, which are as follows:

Basic:
M1. For all a ∈ A, a � a
M2. x � 1, 0 � x
M3. If x � z and y � u, then xy � zu
∨
M4. xwy � z and xvy � z if and only if x(w ∨ v)y � z
M5. If z � xwy, then z � x(w ∨ v)y
M6. If z � xvy, then z � x(w ∨ v)y
assoc∨. z � x(v1 ∨ (v2 ∨ v3))y iff z � x((v1 ∨ v2) ∨ v3)y
comm∨. z � w(x ∨ y)v iff z � w(y ∨ x)v
id∨. If x � y(w ∨ w)z, then x � ywz
∧
M7. z � xwy and z � xvy if and only if z � x(w ∧ v)y
M8. If xwy � z, then x(w ∧ v)y � z
M9. If xwy � z, then x(v ∧ w)y � z
∧assoc. x(v1 ∧ (v2 ∧ v3))y � z iff x((v1 ∧ v2) ∧ v3)y � z
∧comm. w(x ∧ y)v � z iff w(y ∧ x)v � z
∧id. If x(w ∧ w)y � z, then xwy � z
(∼)
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M10. If w ∧ ∼v � u ∨ v, then w � u ∨ v and w ∧ ∼v � u
M11. If w ∧ v � u ∨ ∼v, then w ∧ v � u and w � u ∨ ∼v
(Representation)

∧repr. x[(wa) ∧ (w′cdv′)][(bv) ∧ (w′cdv′)]y � z iff
x[(wabv) ∧ (w′c)][(wabv) ∧ (dv′)]y � z

repr∧. z � x[(wa) ∧ (w′cdv′)][(bv) ∧ (w′cdv′)]y iff
z � x[(wabv) ∧ (w′c)][(wabv) ∧ (dv′)]y

∨repr. x[(wa) ∨ (w′cdv′)][(bv) ∨ (w′cdv′)]y � z iff
x[(wabv) ∨ (w′c)][(wabv) ∨ (dv′)]y � z

repr∨. z � x[(wa) ∨ (w′cdv′)][(bv) ∨ (w′cdv′)]y iff
z � x[(wabv) ∨ (w′c)][(wabv) ∨ (dv′)]y

(Boolean distribution)

BD1. w(x ∧ (y ∨ z))v � u iff w((x ∧ y) ∨ (x ∧ z))v � u
BD2. u � w(x ∧ (y ∨ z))v iff u � w((x ∧ y) ∨ (x ∧ z))v
(Double negation)

DN1. wxv � y iff w(∼∼x)v � y
DN2. y � wxv iff y � w(∼∼x)v

1l. If w(a ∧ 1)v � z, then wav � z
0r. If z � w(a ∨ 0)v then z � wav

We denote the class of ambiguity matrices which satisfy the above require-
ments by AM. It is important to underline that an ambiguity matrix (A,�)
is not an algebra; A is an algebra, �⊆ A∗×A∗ is a relation between strings of
terms. It is of course easy to see that concatenation corresponds to ambiguity.
Maybe a comment on the representation axioms: as we have said, a term like
w ∧ v is just an abbreviation for a set of strings. The representation axioms
are necessary that all strings abbreviated by a term are exchangeable in all
contexts (we will come to this below). Note that in all ambiguity matrices,

id. xwwy � z iff xwy � z
is derivable from these axioms (same on the right): assume xwwy � z. Then
x(w∨w)(w∨w)y � z (by M4.), hence x((ww)∨w)y � z (by notation); hence
(again by M4.) xwy � z. For the other direction, assume xwy � z, hence
x(w ∧ (ww))y � z, where w ∧ (ww) is an abbreviation for (w ∧ w)(w ∧ w),
hence x(w ∧ w)(w ∧ w))y � z, and so xwwy � z. The main use for 1l. is that
it ensures that

empty left. w � v iff 1 � v ∨ ∼w
If is clear, since w � v entails 1 ∧ w � v ∨ ∼w (M5.,M8.) entails 1 � v ∨ ∼w
(M11.). Only if 1 � v ∨ ∼w entails 1 ∧ w � v (M8.,M11.), and by 1l., w � v.
Hence 1l. allows us to simulate an empty left-hand side, same for 0r. on the
right. Keep in mind that the terms we write are just abbreviations for strings,
and operations on the empty string ε are undefined! We have a (somewhat
sloppy) correspondence of strings with ambiguous normal forms on the one
side, and proof rules with conditions on � on the other. The only rule we miss
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is (cut), and in fact this would correspond to a very peculiar property of the
ambiguity matrix which does not hold in general:

(strong transitivity) If y′ � y, xyz � u, then xy′z � u.

We will refer to this property below in Theorem 75. But we first come to an
important definition.

Definition 62 (Congruence in AM) We say w, v are congruent and write
w � v iff for all x, y, z ∈ A∗, [xwy � z ⇔ xvy � z] and [z � xwy ⇔ z � xvy].

This is an important relation, as this does not coincide with the symmetric
closure of �, which we denote by '; in (incongruent) ambiguity matrices, '
is not a congruence on A∗! Note that matrices are more general than UDA
for exactly this reason. In matrices, strings are less interesting than their con-
gruences classes; we define w� = {x : x � w}, and A∗� = {w� : w ∈ A∗}.
We will show that pseudo-Boolean operations can be applied to congruence
classes; hence A∗� forms an algebra, which we will describe in section 6.6. We
now provide some examples of ambiguity matrices.

Example 1 Let A1 be an arbitrary algebra of the signature of Boolean alge-
bras, and put �1= A∗ × A∗. Then (A1,�1) is a matrix, as it clearly satisfies
the base conditions M1.-M3., and moreover all other conditions which have the
form of implications, of which the consequence is always true in our example.
This is the matrix in which every sequent is valid, and none is falsified. If we
take the set of �1-congruence classes (there is just one), this matrix becomes
the trivial commutative universal distribution algebra.

Example 2 Let A2 be the two element Boolean algebra, hence A2 = {0, 1}.
The smallest matrix relation �2 for this algebra is the following: we have
awb �2 cvd iff a ≤ c, b ≤ d (read ≤ as on natural numbers). The reason is
that 1001 �2 (10)∨∼(10) and 0110 �2 (10)∧∼(10), and we have idempotence.
Hence the Margin Lemma applies to this matrix (A2,�2), and it is easy to
show that the algebra of its �2-congruence classes is a universal distribution
algebra. This example shows that making the underlying algebra A a Boolean
algebra already heavily restricts the possibilities of the matrix relation; this is
the reason we allow for arbitrary algebras. A more general result on the effect
of the underlying algebra will be presented in Theorem 75.

Example 3 Let G be an arbitrary set, A = term(G), the set of all Boolean
terms over G. We let A3 be the term algebra, that is, the algebra where
every term denotes itself and nothing else. We let �3 denote the smallest
relation such that for every a ∈ A, w ∈ A∗ a �3 a, w �3 1, 0 �3 w, and
all other matrix axioms (which have the form of implications) are satisfied,
and nothing else. This is a well-formed inductive definition, and it defines the
free matrix generated by G. Whereas example 1 was a matrix making every
sequent valid, (A3,�3) is a matrix making only those sequents valid which
are valid in every matrix containing G. It is actually not difficult to show
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that the formula-matrix, which we define for our completeness proof below, is
equivalent to the matrix generated by G = Var . If we take the set of the �3

congruence classes, the result is not a universal distribution algebra, provided
|G| ≥ 2; this follows from Theorems 75.

Informally, Theorem 75 gives a number of equivalent conditions under
which a matrix (A,�) is equivalent to a universal distribution algebra (in
a sense to be made precise), among which are: it satisfies (strong transitiv-
ity), and the algebra of its congruence classes is Boolean. We present this
result later on, since it is much easier to prove with the following completeness
result.

6.4 Matrix interpretation of ALcf

Given a matrix (A,�), there are several possible interpretations of ALcf . Im-
portantly, we will interpret variables into �-congruence classes, not strings. In-
terpreting variables as letters/string leads to problems, since for example w∧v
does not represent a unique string, so the interpretation would become non-
functional. We will interpret variables as �-congruence classes of letters. We
thus take a map σ : Var → A� and extend it canonically to σ, σ : WFF→ A∗�.
To this end, we need to define the operations ∨,∧,∼ for congruence classes;
the same for concatenation, which we then denote by ·:

M ∧N = {x : x � (w ∧ v) for some w ∈M , v ∈ N} etc.
M ·N = {x : x � wv for some w ∈M , v ∈ N}

The result is always a congruence class (see below). As usual, · will often
be omitted, and we often write strings as arbitrary representatives of their
congruence class (justified by Lemma 65).

We consider the interpretation where atomic formulas are mapped to con-
gruence classes of single letters, that is σ(p) = a� for some a, and call this
interpretation unambiguous. This is however not necessary; we could also as-
sume that a formula like p is interpreted as ambiguous (i.e. as a string). Given
σ : Var → A, we now define matrix interpretations:

1. σ(p) = σ(p) = σ(p), for p ∈ Var
2. σ(φ ∧ χ) = σ(φ) ∧ σ(χ) = σ(φ ∧ χ)
3. σ(φ ∨ χ) = σ(φ) ∨ σ(χ) = σ(φ ∨ χ)
4. σ(¬χ) = ∼σ(χ) = σ(¬χ)
5. σ(φ‖χ) = σ(φ) · σ(χ) = σ(φ‖χ)
6. σ(\(Γ1, ..., Γi)) = σ(Γ1) ∨ ... ∨ σ(Γi)
7. σ(\(Γ1, ..., Γi)) = σ(Γ1) ∧ ... ∧ σ(Γ )
8. σ(♦(Γ ;∆) = σ(Γ ) · σ(∆)
9. σ(♦(Γ ;∆)) = σ(Γ ) · σ(∆)

Note that by the string abbreviations, it follows immediately that

σ((α‖β) ∧ γ) = σ((α ∧ γ)‖(β ∧ γ))(28)

σ((α‖β) ∨ γ) = σ((α ∨ γ)‖(β ∨ γ))(29)

σ(¬(α‖β)) = σ((¬α)‖(¬β))(30)
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Same for σ. Hence the distributive laws are already implicit in interpretations!

Definition 63 (Truth and validity in ambiguity matrices)

– We say a sequent Γ ` ∆ is true in a matrix (A,�) under interpretation
σ, in symbols (A,�), σ |= Γ ` ∆, if σ(Γ ) � σ(∆).

– We say Γ ` ∆ is valid in a matrix (A,�), in symbols (A,�) |= Γ ` ∆,
if for every σ : Var → A, we have (A,�), σ |= Γ ` ∆.

– We say Γ ` ∆ is valid, in symbols AM |= Γ ` ∆ if Γ ` ∆ is valid in all
ambiguity matrices.

We get a neat semantics, where all forms of ambiguity are just interpreted as
concatenation in words. We now have to prove some properties for matrices
and interpretations:

Lemma 64 In all ambiguity matrices,

1. (wxv) ∧ (wyv) � z iff w(x ∧ y)v � z
2. z � (wxv) ∨ (wyv) iff z � w(x ∨ y)v

Proof. We only prove 1., 2. is clearly parallel.
If : We write the axiom we use in each line, and the line to which it applies;

if no line is indicated, it refers to the previous. “Notation” means the line is
just a notational variant of the premise.

1 w(x ∧ y)v � z assumption
2 ww(x ∧ y)vv � z id.
3 (w ∧ wyv)(x ∧ w)(x ∧ y)(x ∧ v)(v ∧ wyv) � z repeated M8.,M9.
4 (w ∧ wyv)(x ∧ wyv)(v ∧ wyv) � z notation
5 (wxv) ∧ (wyv) � z notation

Only if :

1 (wxv) ∧ (wyv) � z assumption
2 (w ∧ (wyv))(x ∧ (wyv))(v ∧ (wyv)) � z notation
3 (w ∧ (wyv))(x ∧ y) ∧ (wyv))(v ∧ (wyv)) � z M8.,∧comm,∧assoc
4 (w(x ∧ y)v) ∧ (wyv) � z notation
5 (w(x ∧ y)v) ∧ (w(x ∧ y)v) � z parallel argument
6 (w(x ∧ y)v) � z ∧id

�
We now address the problem of applying operations to�-equivalence classes;

recall that w� = {x : x � w}. What is important is that the result is indepen-
dent by the choice of the members of the class; this is assured by the following
lemma:

Lemma 65 1. (w ∧ v)� = (w′ ∧ v′)� for arbitrary w′ � w, v′ � v′
2. (w ∨ v)� = (w′ ∨ v′)� for arbitrary w′ � w, v′ � v′
3. (∼w)� = (∼w′) for arbitrary w′ � w
4. {(wv)�} = (w′v′)� for arbitrary w′ � w, v′ � v′

Proof. 1. On the left of �:
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1 x(w ∧ v)y � z assumption
2 (xwy) ∧ (xvy) � z Lemma 64
3 xwy � ∼(xvy) ∨ z M5.,M11.
4 xw′y � ∼(xvy) ∨ z w � w′
5 1 � ∼(xw′y) ∨ ∼(xvy) ∨ z empty left.
6 xvy � ∼(xw′y) ∨ z empty left.,comm∨.
7 xv′y � ∼(xw′y) ∨ z v � v′
8 xv′y ∧ xw′y � z M8.,M11
9 x(w′ ∧ v′)y � z Lemma 64

On the right of �: Assume z � x(w ∧ v)y. Then z � xwy and z � xvy,
hence z � xw′y and z � xv′y, so z � x(w′ ∧ v′)y.

2. Parallel.
3. Assume x(∼w)y � z. Then 1 � z ∨ ∼x(∼∼w)∼y (empty left.), hence

1 � z ∨ (∼x)w(∼y) (DN2.), so 1 ∧ ∼z � ((∼x)w′∼y) (M10.), and inverting
back again, x(∼w′)y � z.

Parallel on the right-hand side.
4. Assume xwvy � z. Then xw′vy � z and so xw′v′y � z.
Parallel on the right-hand side. �
This lemma is important, because it shows that for �-congruence classes

M,N , we can choose arbitrary representatives w ∈M , v ∈ N to define classes
M ∧N etc. Algebraically speaking, operations are independent of representa-
tives. In the sequel, we will consider strings only up to �-congruence, writing
things like w ∧ v = u as a shorthand for both w� ∧ v� = u� and w ∧ v � u.

6.5 Soundness and Completeness

Soundness First, we start with another auxiliary lemma:

Lemma 66 For all interpretations σ, contexts Γ [−], formulas δ, δ′, there are
w, v such that

σ(Γ [δ]) = wxv�, σ(Γ [δ′]) = wx′v�, and σ(Γ [δ ∧ δ′]) = w(x ∧ x′)v�(31)

σ(Γ [δ]) = wxv�, σ(Γ [δ′]) = wx′v�, and σ(Γ [δ ∨ δ′]) = w(x ∧ x′)v�(32)

Proof. We just prove (31), since (31) is parallel. By induction over Γ [−].
Induction base is clear (Γ [α] = α), where w = v = ε.

Assume it holds for Γ [−]. Then take \(Γ [−], ∆). Then by distribution laws
we have σ(\(Γ [δ], ∆)) = (wxv) ∨ σ(∆) = (w ∨ σ(∆))(x ∨ σ(∆))(v ∨ σ(∆));
same for σ(\(Γ [δ′], ∆)) = (w∨σ(∆))(x′∨σ(∆))(v∨σ(∆)). Moreover, we have
σ(\(Γ [δ∧δ′], ∆)) = (w∨σ(∆))((x∧x′)∨σ(∆))(v∨σ(∆)). As we interpret into
�-equivalence classes and we have (x∧ x′)∨ σ(∆) � (x∨ σ(∆))∧ (x′ ∨ σ(∆)),
we have σ(Γ [δ ∧ δ′]) = w′((x ∨ σ(∆)) ∧ (x′ ∨ σ(∆))v′. Parallel for \(∆,Γ [−]).

Take ♦(Γ [−];∆) This is straightforward, as σ(♦(Γ [δ];∆)) = σ(♦(Γ [δ])v
for some v independent of δ. Same for ♦(∆;Γ [−]) �

Lemma 67 If ALcf Γ ` ∆, then AM |= Γ ` ∆.
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Proof. We perform the usual induction over rules, where (ax) can be seen as
the induction base. We need not consider the admissible rules, but we do in
some cases, as they can be useful in soundness proofs for other rules.

(ax) Obviously sound by the interpretation; we always have a � a, and so
w ∧ a � a ∨ v for all w, v ∈ A∗

(∧I),(I∨) Interpretation of sequents remains identical.

(I∧) Sound by Lemma 66, and M7.

(∨I) Parallel with M8.

(\comm) Application on the left-hand side is sound by ∧comm, on the
right-hand side by comm∨.

(\weak) (admissible) Clear by ∨, ∧ introduction: we thereby can immedi-
ately weaken by single letters. Moreover, weakening by words is nothing but
repeated weakening by letters, hence the claim follows.

(\contr) (admissible) We have w ∧ w � w � w ∨ w.

(I♦I) Assume w ∧ v � x ∨ y, and z ∧ v � u ∨ y. Then by M3. (w ∧
v)(z ∧ v) � (x ∨ y)(u ∨ y). Now by the definition of ∧,∨ on strings, we have
(w ∧ v)(z ∧ v) = (wz) ∧ v, and (x ∨ y)(u ∨ y) = (xu) ∨ y.

(I♦) Assume w � x∨y∨z, w � x′∨y′∨z. Then we have w∧∼x � y∨z and
w∧∼x′ � y′∨z. Then by soundness of (I♦I), we have w∧((∼x)(∼x′)) � (yy′)∨
z. Hence, we have w � ∼((∼x)(∼x′))∨ (yy′)∨ z, were ∼((∼x)(∼x′)) = xx′ by
notation and DN1.

(♦I) Parallel.

(‖I),(I‖) are clear (interpretation remains identical).

(♦assoc) is clear (interpretation remains identical).

(inter1) Assume we apply the rule on the left. We then have x((wv)∧w)y �
z, x((wv)∧v)y � z. Hence we have x(((wv)∧w)∨((wv∧v))y � z by M4., and by
Boolean distribution BD1., x(((wv)∧(w∨v))y = x(w∧(w∨v))(v∧(w∨v))y =
x((w ∧ w) ∨ (w ∧ v))((v ∧ w) ∨ (v ∧ v))y � z, and by using M4. in the other
direction, x(w ∧ w)(v ∧ v))y � z, which holds iff xwvy � z. Hence the rule is
sound on the left; parallel on the right.

(subst) (admissible) Instead of contexts, we use formulas with the same in-
terpretation. Assume σ(Γ [α]) � w, σ(Γ [♦(β1; ...;βj ; ...;βi)] � w. By soundness
of (∨I), σ(Γ [♦(β1∨α; ...;βj∨α; ...;βi∨α)] = u(x1∨y)...(xj∨y)...(xi∨y)z � w.
By applying M7. repeatedly, we obtain ux1...y...xiz � w, where ux1...y...xiz =
σ(Γ [♦(β1; ...;α; ...;βi)] by Lemma 66. Parallel on the right-hand side.

(inter2) Assume σ(Γ [β,♦(α;β; γ)]) � w, σ(Γ [♦(α; (\(β, β′); γ)] � w. We
then have, by the soundness of weakening, σ(Γ [♦(α; (\(β, β′); γ),♦(α;β; γ)]] �
w. Now we can apply the soundness of (subst) and obtain, substituting β for
\(β, β′), σ(Γ [♦(α;β; γ),♦(α;β; γ)] � w. Now by the soundness of (\contr), we
have σ(Γ [♦(α;β; γ)] � w, which was to prove. Parallel on the right-hand side.

(¬I) Assume w � x ∨ y. Then we have (by M4.) w ∧∼y � x ∨ y, hence by
M10. w ∧ ∼y � x. As ∼(a1...an) is just an abbreviation for ∼a1....∼an, this
already proves the claim for arbitrary instances.

(I¬) Parallel. �
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Completeness We first establish the concept of the formula-matrix: We let
AAL = (AAL,�AL) be the absolutely free term algebra of CL-formulas. Hence
AAL = {α : α a well-formed classical formula}, where connectives are inter-
preted as themselves (similar to example 3), and every term is equal to itself
and no other term. This means that in this matrix, arbitrary Boolean terms
count as single letters.

Definition 68 We define �AL as follows: for arbitrary terms α1, ..., αi, β1, ..., βj
of AAL (equivalently: formulas of classical logic),

α1...αi �AL β1...βj iff ALcf ♦(α1; ...;αi) ` ♦(β1; ...;βj)

The formula matrix has the following important property:

Lemma 69 Assume a1, ..., ai, b1, ..., bj ∈ AAL. Then

1. (a1...ai) ∧ (b1...bj) = {c1...cn : c1‖....‖cn ∈ anf ((a1‖...‖ai) ∧ (b1‖...‖bj))
2. (a1...ai) ∨ (b1...bj) = {c1...cn : c1‖....‖cn ∈ anf ((a1‖...‖ai) ∨ (b1‖...‖bj))

Proof. An easy induction over i + j. Base case is i = j = 1, which is trivial.
For induction step, just compare the string abbreviations and Definition 50 of
ambiguous normal forms, which are obviously parallel.14 �

Lemma 70 AAL is an ambiguity matrix.

Proof. We go through the rules for �.
M1. is clear.
M2. we let 0 stand for an arbitrary classical contradiction, 1 an arbitrary

classical theorem; then the claim follows.
M3. Clear by (I♦I).
M4. We can prove this as follows: assume we have ♦(Γ ;α1; ...;αi;∆) ` Θ

and ♦(Γ ;β1; ...;βj ;∆) ` Θ. Then we have ♦(Γ ; (α1‖...‖αi) ∨ (β1‖...‖βj);∆) `
Θ. By the ANF Lemma, for every γ ∈ anf ((α1‖...‖αi) ∨ (β1‖...‖βj)), we have
♦(Γ ; γ;∆) ` Θ. Hence the claim follows easily Lemma 69 and by invertibility.

M5., M6.: clear by repeated weakening.
assoc∨. Straightforward by invertibility.
comm∨. Straightforward by invertibility.
id∨. Clear by invertibility and (\contr).
M7.: Parallel to M4.
M8.,M9.: parallel to M5.,M6.
∧assoc. Straightforward by invertibility.
∧comm. Straightforward by invertibility.
∧id. Clear by inversion and (\contr).
M10. Assume cf α,¬β ` γ, β. Then by invertibility and (\contr) cf α `

γ, β, and by (¬I) and (\contr) cf α,¬β ` γ.
M11. Parallel.

14 The difference in formulation, binary for strings, i-ary for formulas, is due to the fact
that for formulas, we need to account for all possible bracketings, implicit in Defintion 50,
whereas strings do not have brackets by definition.
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∧repr. We prove this via the ANF Lemma. Assume x((wa)∧(w′cdv′))((bv)∧
(w′cdv′))y �AL z; recall that ((wa) ∧ (w′cdv′))((bv) ∧ (w′cdv′)) is a shorthand
for a set of strings, each of which can be seen as an ambiguous normal form.
By the definition of ambiguous normal forms,

anf ((α ∧ (γ‖δ))‖(β ∧ (γ‖δ)) ⊆ anf ((α‖β) ∧ (γ‖δ))) ⊇ anf ((α‖β) ∧ γ)‖((α‖β) ∧ δ)).

Hence all these ambiguous normal forms are congruent in ALcf (ANF Lemma,
and congruence is transitive), and hence x((wabv)∧(w′c))((wabv)∧(dv′))y �AL

z. Same for the other direction.
repr∧. Similar.
repr∨. Similar.
∨repr. Similar.
BD1. Assume w(x∧ (y ∨ z))v �AL u. Note that this is an abbreviation: for

x = a1...an, w(a1 ∧ (y ∨ z))...(an ∧ (y ∨ z))v �AL u, which itself is again an
abbreviation etc. If we take the word letterwise, we find that letters have the
form a ∧ (b ∨ c). Hence, as the ∨ is not within the scope of ¬, by invertibility
of (∧I),(∨I), we can substitute every letter by a ∧ b, same for a ∧ c. Hence we
can derive w(x ∧ y)v �AL u and w(x ∧ z)v �AL u. Now we can apply the rule
(∨I) to the formulas for x∧ y and x∧ z. Now the claim follows easily from the
ANF Lemma and invertibility of (‖I).

BD2. parallel.
DN1. Straightforward by Lemma 54 and the ANF Lemma.
DN2. Parallel.
1l. Assume cf ♦(α1; ...;β∧1; ...;αi) ` Γ . By repeated weakening and (‖I),

we obtain cf α1∧1‖...‖β∧1‖...‖αi∧1 ` Γ . Since (α1∧1)‖...‖(β∧1)‖...‖(αi∧
1) ∈ anf ((α1‖...‖β‖...‖αi) ∧ 1), we have cf α1‖...‖β‖...‖αi, 1 ` Γ . Now the
claim follows from Lemma 57.

0r. Parallel. �
We need one more lemma. We define the canonical interpretation into

AAL by σ(p) = p�; the extension to arbitrary formulas is as usual. Recall that
σ and σ coincide on formulas.

Lemma 71 Assume σ is the canonical interpretation into the formula-matrix.
Then for an arbitrary formula φ, if γ1‖...‖γi ∈ anf (φ), then γ1...γi ∈ σ(φ) =
σ(φ).

Proof. Induction over formula complexity. The atomic case is clear. So assume
the claim holds for all formulas with complexity ≤ n (where complexity is the
number of connectives in the formula), and φ has complexity n+ 1. We show
it holds for φ by case distinction:

- φ = ¬δ1: Assume ¬α1‖...‖¬αi ∈ anf (¬δ1), where α1‖...‖αi ∈ anf (δ1). By
induction hypothesis, α1...αi ∈ σ(δ1), and hence ¬α1...¬αi ∈ σ(¬δ1).

- φ = δ1‖δ2: Assume γ1‖...‖γi ∈ anf (δ1‖δ2). Then there is j ∈ {1, ..., i− 1}
such that γ1‖...‖γj ∈ anf (δ1), γj+1‖...‖γi ∈ anf (δ2). Hence γ1...γj ∈ σ(δ1),
γj+1...γi ∈ σ(δ2), and hence γ1...γi ∈ σ(δ1) · σ(δ2) = σ(δ1‖δ2).

- φ = δ1 ∧ δ2: Assume α1‖...‖αi ∈ anf (δ1 ∧ δ2). Then either (case 1) δ1 =
γ1‖...‖γi and for j ∈ {1, ..., i}, αj ∈ anf (γj ∧ δ2). By induction hypothesis, we
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have αj ∈ σ(γj∧δ2). We have σ((γ1‖...‖γi)∧δ2) = σ((γ1∧δ2)‖...‖(γi∧δ2)) (see
equation (28)). Hence α1...αi ∈ σ((γ1‖...‖γi) ∧ δ2) = σ(δ1 ∧ δ2) (by induction
hypothesis). Parallel for (case 2) δ2 = γ1‖...‖γi and α1 ∈ anf (δ1 ∧ γ1),...,
αi ∈ anf (δ1 ∧ γi).

- φ = δ1 ∨ δ2: Parallel �
Note that the inclusion is generally proper: since for example p ∨ q /∈

anf (q ∨ p), but p∨ q ∈ σ(q ∨ p) (σ the canonical interpretation), since the two
are congruent in every matrix. Having established this, we can easily prove
the main claim:

Theorem 72 (Soundness and Completeness) AM |= Γ ` ∆ if and only if
ALcf Γ ` ∆.

Proof. If : See Lemma 67.
Only-if By contraposition: assume we have an underivable sequent 6ALcf

Γ ` ∆. Let γ, δ be the formulas congruent to these sequents (by Lemma 52). By
the ANF Lemma, we have γ′ = γ1‖...‖γn ∈ anf (γ), δ′ = δ1‖...‖δm ∈ anf (δ),
such that 6ALcf γ′ ` δ′. By the invertibility of the rules (‖I),(I‖), we have 6ALcf

Γ ′ ` ∆′, where Γ ′ = ♦(γ1; ...; γn), ∆′ = ♦(δ1; ...; δm), where γ1, ..., γn, δ1, ..., δm
are classical (since they are the components of an ambiguous normal form).
Now by the previous lemma it follows that γ1...γn ∈ σ(Γ ), δ1...δm ∈ σ(∆),
where (by Definition 68) γ1...γn 6�AL δ1...δm; hence AAL, σ 6|= Γ ` ∆. �

Hence we have a completeness proof for our matrix semantics. Note that
in some sense, this semantics corresponds to ambiguous normal forms. In par-
ticular, it is noteworthy that formulas are not interpreted as themselves even
if we interpret into AAL. For example, we have σ((a‖b)∧ c) = ((a∧ c)(b∧ c))�,
as is easy to check. Hence in the interpretation, every formula automatically
becomes an (kind of) ambiguous normal form. However, this is a sloppy corre-
spondence, as interpretation into the formula-matrix involves more than just
distribution, since we interpret into congruence classes. This is the first point
where the semantics is non-trivial: some equivalent unambiguous formulas are
congruent, such as p ∨ q and q ∨ p, but others not, such as p ∨ ¬p and q ∨ ¬q.
The second remarkable property of this semantics is that we actually only
manipulate strings, where all operations except for concatenation are defined
for letters only. We used operations ∧,∨,∼ on strings, but these are only ab-
breviations for operations on letters! It is thus a noteworthy effect that there
is a semantics of ambiguity which works on strings in this canonical sense.

6.6 Matrices and Algebras

We can now establish a slightly more concise correlation between ambiguity
matrices and universal distribution algebras (and algebra in general). For the
relation of matrices and algebras, we need the algebra of congruence classes of
a matrix: given (A,�), we define Con(A,�) = (A∗�,∧,∨,∼, ·, 0�, 1�). This
is an algebra where pseudo-Boolean connectives are defined over congruence
classes (see above), and instead of ‖ we have concatenation (denoted by ·)
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of congruence classes. The above results ensure all operations on classes are
independent of representatives. The relation between algebras and matrices is
non-trivial: given a matrix (A,�), the algebra Con(A,�) has an order relation
≤, defined by

w� ≤ v� iff w� ∧ v� = w� and w� ∨ v� = v�

(Actually, the two conditions are equivalent, we skip the proof). Note that ≤ is
a relation between congruence classes, not strings, but since it is independent
of representatives and we mostly write w instead of w� anyway, this can be
neglected. It is easy to show that w� ≤ v� entails w � v, but the converse does
not necessarily hold. We now show that whereas � semantically corresponds
to `, ≤ in Con(A,�) is the semantic counterpart of the relation 5 in ALcf

which we have discussed at length in section 6.2:

Lemma 73 w ≤ v if and only if xvy � z entails xwy � z and z � xwy
entails z � xvy.

Proof. Only if : assume w ≤ v, and xvy � z. Then x(w ∨ v)y � z (definition
of ≤), and so xwy � z (M4.). Parallel for z � xwy using ∧.

If : Assume xvy � z entails xwy � z and z � xwy entails z � xvy. We
prove that v � (w ∨ v); the proof for ∧ is parallel.

On the left: xvy � z entails by assumption xwy � z, hence x(w ∨ v)y � z,
and x(w ∨ v)y � z obviously entails xvy � z.

On the right: z � xvy entails z � x(w∨v)y. Conversely, z � x(w∨v)y holds
iff z � (xwy) ∨ (xvy) (Lemma 64), which holds iff z ∧ ∼(xvy) � xwy which
entails z ∧ ∼(xvy) � xvy (by assumption), which entails z � (xvy) ∨ (xvy),
and hence z � xvy. �

Hence we have a natural semantics for the logical relation 5. ≤ is, contrary
to �, obviously transitive and antisymmetric (since it is defined on congruence
classes), and it satisfies (strong transitivity); but ≤ is not a good model for `,
as we can see from Theorem 75.

Lemma 74 In an ambiguity matrix (A,�) which satisfies (strong transitiv-
ity), the rule (cut) is sound.

Proof. The claim is obvious (provided Lemma 66) for the following:

(matrix cut) If y′ � y ∨ c, xyz � u, then xy′z � u ∨ c.
We show that (strong transitivity) entails (matrix cut) (the other direction
is straightforward): assume in a strongly transitive matrix we have y � a ∨ c
and xaz � u. Now y � a ∨ c entails ∼c ∧ y � a; by (strong transitivity) we
obtain x(∼c∧ y)z � u, and by repeated M9., we obtain ∼c∧ (xyz) � u (recall
that ∼c∧ (xyz) is a shorthand, we obtain the term by introducing ∧∼c on all
letters separately). Then by M5., we get ∼c∧xyz � a∨ c. By M10., we obtain
xyz � a ∨ c. �

Now comes the main result on ambiguity matrices and algebras:

Theorem 75 Let (A,�) be an ambiguity matrix. Then the following are
equivalent:
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1. (A�,∧,∨,∼, 0�, 1�) is a Boolean algebra.
2. Con(A,�) is a universal distribution algebra.
3. (A,�) satisfies (strong transitivity).
4. ≤ coincides with �.

Proof. 1.⇒ 2. We show that the relations ≤ and = of Con(A,�) satisfy the
axioms of UDA: (‖1),(‖2) are clear by notation, (assoc) obvious for concate-
nation, (mon) follows from Lemma 73, and for (inf) consider the following:
assume xwvy � z; then x(w ∧ v)(w ∧ v)y � z, hence x(w ∧ v)y � z. Assume
z � x(w ∧ v)y; then z � x(w ∧ v)(w ∧ v)y, hence z � xwvy, same for ∨.

2. ⇒ 3. Assume Con(A,�) ∈ UDA, hence it is a model of AL, and (cut)
is sound. Our soundness proof states in particular that if Γ [α] ` ∆ is true in a
model, Θ ` α is true, then so is Γ [Θ] ` ∆. Assume xyz � u, y′ � y. We simply
put σ(p) = y, σ(p′) = y′, σ(q1) = x, σ(q2) = z, σ(r) = u. Then ♦(q1; p; q2) ` r
is true, p′ ` p is true, hence so is ♦(q1; p′; q2) ` r. Note that it is irrelevant
that none of these sequents is derivable: (cut) preserves truth, that is all we
need.

3. ⇒ 4. In general, w ≤ v entails w � v ∧ w entails w � v. We prove that
under assumption of 3., w � v entails w ≤ v. So assume w � v, where �
satisfies (strong transitivity).

Assume xvy � z. Then xwy � z, so x(w∨v)y � z. x(w∨v)y � z obviously
entails xvy � z, hence v and w ∨ v are congruent on the left-hand side.

z � xvy obviously entails z � x(w∨v)y. Conversely, assume z � x(w∨v)y.
Hence z � (xwy)∨(xvy) (Lemma 64). By repeated negation axiom application,
∼x∼w∼y � (∼z) ∨ (xvy). Since ∼v � ∼w, by (strong transitivity) we obtain
∼x∼v∼y � (∼z) ∨ (xvy), and again applying negation axioms, we have z �
(xvy) ∨ (xvy), hence z � xvy. This proves that v � w ∨ v. Parallel for ∧, so
v ≤ w.

4.⇒ 1. It is an easy exercise to check that that ', the reflexive closure of �,
satisfies all axioms of a Boolean algebra (whatever axiomatization we choose).
If � coincides with ≤, then ' coincides with = (equality of Con(A,�)). Hence
the claim follows. �

This theorem gives us a number of insights: firstly, note that this entails the
following: if (A,�) satisfies any of the above, then for all a, b ∈ A, w, v ∈ w∗,
awb � avb. This obviously follows from 2.: if Con(A,�) ∈ UDA, then (A,�)
is a model for AL (with cut), hence the Margin Lemma and other negative
results apply to it. The theorem thus gives a number of equivalent conditions
which disqualify a matrix as an adequate model. An important one is 1.: if the
congruence algebra is Boolean, the matrix is inadequate. This means, in order
to reason adequately with ambiguity, we need to abandon Boolean reasoning
as soon as ambiguity actually comes into play. (strong transitivity) has the
same effect of disqualifying the model immediately. An important criterion
comes with 4.: this point states that we have to distinguish the relation �
(corresponds to incongruent entailment, `) and ≤ (congruent entailment, cor-
responds to 5) necessarily. As soon as the two coincide, the result becomes a
rather trivial and surely inadequate model for ambiguity. We think Theorem
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75 is very satisfying from a formal point of view; next we will try to shed some
light on the intuitive meaning of these results.

6.7 Meaning of the semantics

Given this semantics for a calculus, we now try to provide it with an intuitive
meaning, which somehow relates it to the real world, though only in a very
preliminary fashion. We think that what we mostly learn from the complete-
ness of matrix semantics (and inadequacy of UDA) is that syntactic form
matters for ambiguous meanings in a stronger sense than usual, namely even
beyond inferential equivalence. For example, consider the (derivable) sequent

` (p ∨ ¬p)‖(p ∨ ¬q)‖(¬p ∨ q)‖(q ∨ ¬q)

Our results lead us to the conclusion that the different subterms, separated by
‖, are dependent on each other beyond inferential equivalence. If we substitute
r∨¬r for p∨¬p or q∨¬q, then the sequent is no longer derivable, even though
the subformulas are logically equivalent in ALcf . The point is that we have a
dependence which is syntactic in nature, that is, it concerns the syntactic form
of the terms, not their denotation or inferential properties. Concretely, the q in
p∨¬q and ¬p∨q is connected to the q in q∨¬q, we cannot change one without
the other. Seen from the other direction, in classical logic q has a contribution
to the meaning of q ∨ ¬q; but since the latter is inferentially equivalent to 1
(any theorem), the q is irrelevant and arbitrary for the meaning of any formula
containing q ∨ ¬q as a subformula. In AL on the other hand, we have to keep
track of this subterm q, so in a sense we can say our semantics and calculus
are less local or less context-free than CL, the classical calculus. We need to
know more of a term than its inferential equivalence class in order to interpret
it properly, and this is what we mean by saying the syntactic form of the term
matters in a stronger sense. Standard algebraic semantics is – by definition –
incapable of modeling this, since the central notion of algebra is the one of
congruence, and this is why we have introduced matrix semantics. Maybe we
can put the peculiarity of our calculus and semantics in simple terms: as soon
as there is ambiguity, inferential equivalence does no longer entail congruence
(at least in the trustful setting).

Our matrix-semantics is language-theoretic in a broad sense, in that the
main objects are strings, and the main notion of congruence concerns ex-
changeability in strings, which is called Nerode-equivalence in formal language
theory. In matrix semantics, different Boolean terms which are equivalent in
B (the class of Boolean algebras) are not generally congruent, because they
are not necessarily exchangeable within words of the matrix, and this is the
whole point of matrix-semantics. This is achieved by keeping all terms (even
equivalent ones) distinct, and expressing constraints only via the relation �.

So how does this relate to the reality of, and intuition on, ambiguity? In
fact, regarding incongruence, our logic not only lacks the cut-rule, it also lacks
transitivity of inference. One might consider this a devastating result, as this
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even contradicts a basic property of consequence relations as usually defined
(see Tarski, 1936). However, to us this does not seem to be too bad: if we think
of transitivity of logical inference, we think of unambiguous statements, and
for unambiguous formulas, in fact we do have transitivity of inference in ALcf .
Transitivity is problematic for ambiguity because in ambiguity, syntactic form
matters, and transitivity “cuts out the middle man”. It is exactly this discard-
ing of a syntactic object which is problematic due to the lack of locality we
explained above. We can explain this by analogy with a real-world situation: if
somebody makes an unambiguous statement, it is enough to remember what
follows from it, that is, some very abstract meaning representation. However,
if someone makes an ambiguous statement, we better remember (more or less
precisely) its syntactic form, in order to be able to reconstruct possible in-
tentions, and to remain aware of ambiguity. This intuitive matter of fact is
reflected by the mathematics, and this seems to be a nice result, enlightening
about the nature of ambiguity.

There is another empirical phenomenon interesting in this context, namely
the well-known zeugma-effect, which states that something is “weird”, but not
incorrect. This arises among other when we use an ellipsis of an ambiguous
word, but in each occasion we use it in a different sense.

(33) a. She made no reply, up her mind, and a dash for the door.15

b. She made no reply, made up her mind, and made a dash for

the door.

Whereas (33-b) is completely normal, in (33-a) we feel there is something
strange and funny, even though we would not say it is wrong. We feel like lan-
guage has been abused. In fact, these examples describe very well the position
of ambiguity: if it where a purely syntactic phenomenon, then (33-a) would
be clearly wrong, because we technically cannot make an ellipsis with two
distinct lexical entries. If it were a purely semantic phenomenon, then (33-a)
should be alright (putting aside matters of uniform usage for the moment). It
is however none of the two: we feel like we are “cheated” by the sentence, as
the left-out word is used in a different sense than its counterpart, but on the
other hand, we cannot say the sentence is wrong. Of course our work will not
shed a completely new light on the nature of ellipsis and the zeugma effect
at this point, but the examples clarify the intermediate position we assign to
ambiguity. And it is interesting that independently and on a completely formal
approach, we find the same effect: our approach of using ALcf provides exactly
an intermediate solution: the syntactic form of formulas matters (equivalence
does not entail congruence), but only up to a certain point, as congruence goes
beyond syntactic identity!

Our mathematical results actually allow to make this a little more precise,
using Lemma 45 (on classic cut) and the corresponding negative results. We
can say: the syntactic form of a term is irrelevant beyond its inferential prop-

15 This is slightly adapted from the song “Madeira, M’Dear?” from Flanders and Swann
– hence “natural data”.
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erties (that is, equivalence coincides with congruence), as long it is 1. not in
the scope of an ambiguity operator, 2. nor is ambiguous in itself. Hence we
can say two things: 1. for representations of ambiguous meanings, equivalence
does not entail congruence. And 2. even for unambiguous “submeanings” of an
ambiguous meaning, equivalence does not entail congruence. On the one side,
this is a nice wrap-up of formal results. However, from a philosophical point of
view, it is more like an interesting point of departure: this is because here we
have naturally used two notions which are actually not really defined and are
quite problematic: the notion of an ambiguous meaning, and the notion of
a submeaning. We will shortly address these notions, though to adequately
treat them would probably require an article in itself.

1. It seems to be intuitively clear what an ambiguous meaning is; but it
seems to be very difficult to define it without already presupposing an equiva-
lent definition (e.g. the one of an unambiguous meaning). Our semantics gives
a very simple definition of ambiguity: a meaning is unambiguous, if and only
if, for all terms denoting it, all of its constituents can be exchanged by equiv-
alent terms. This is of course not extremely satisfying as it presupposes many
theoretical concepts, but still it is an interesting insight.

2. From a logical point of view, it is actually unclear what a submeaning
is: meanings in the logical sense are not ordered by subsumption, nor do they
have an obvious structure. In Boolean algebras, it would be nonsense to say
that p is a submeaning of q ∨ (p ∧ ¬p) (because then every meaning would
be a submeaning of every meaning). In the case of ambiguity, this does (at
least intuitively) not seem to be the case: we have a very clear intuition on the
structure of ambiguous meanings and their submeanings, namely the following:
given an ambiguous utterance, every possible reading is a submeaning. We thus
have a clear structure, which is reflected in our semantics by strings, where each
letter corresponds to one reading (recall that in ambiguity matrices, arbitrarily
complex Boolean terms are just single letters!). Actually, we suppose that this
point is closely connected to 1.: the clear intuition on submeanings and their
composition constitutes our intuition on what ambiguity is.

Two final notes: firstly, note that these points make clear that also con-
ceptually, an algebraic semantics (and a congruent logical calculus with cut)
should be inadequate, because in algebra (for example UDA), it is easy to
show (via isomorphisms) that there is no natural definition of the ambiguous
objects in an algebra, and given an algebra, it is impossible to define the notion
of a constituent of some object (which is not to be confused with the notion of
sub-term, which is very different). Secondly, the notion of submeaning is ac-
tually well-established in information-theoretic semantics is based on feature
structures and unification. This opens some interesting connections which will
however require some research on their own (see Barwise and Etchemendy,
1990, for some work in this direction).
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7 Conclusion

We have investigated the problem of (trustful) reasoning with ambiguity, both
from a logical/syntactic and semantic/algebraic point of view. In the begin-
ning, we found some paradoxical results: even from most innocuous seemingly
assumptions, we had consequences which were strongly counterintuitive, and
almost led to triviality, as in the case of ambiguous algebras and universal
distribution algebras. We have chosen a way out of the dilemma which is not
really obvious: we abandoned the assumption that reasoning with ambiguity
is congruent. Mathematically, this means that we use a logic without ad-
missible cut-rule; conceptually, this means that the syntactic form of a term
matters beyond inferential equivalence. This seems strange at the beginning,
but there were good motivations for this move both on the formal and concep-
tual side, and the results which follow were satisfying for us: in particular, we
presented the cut-free calculus ALcf , and our main hypothesis was that this
calculus is sound and complete for trustful reasoning with ambiguity. We have
provided this calculus with a semantics which is in a sense very natural given
the peculiar properties of ambiguity, though it is rather unusual: ambiguous
meanings are represented as strings, which might be best thought of as am-
biguous normal forms, that is, every string represents the ambiguity between
classical, unambiguous meanings. We leave the full philosophical and practical
implications of this work for further research.
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Appendix 1: The logics and their rules

Logic Rules of the logic Admissible rules

Basic (ax),(∧I),(I∧),(∨I),(I∨),(¬I), no results here
(I¬),(\comm),(‖I),(I‖),(I♦I)

AL Basic, (cut) (inter1),(inter2),(I♦),(♦I),
(\weak),(♦exp),(\contr),(♦contr)

ALcomm AL,(♦comm) all, inconsistent

ALcf Basic, (inter1),(inter2),(I♦),(♦I) (\weak),(♦exp),(\contr),(♦contr)

ALcf+comm ALcf ,(♦comm) no results here



Appendix 2: Index

(A,�), ambiguity matrix, 53

(A,�) |= Γ ` ∆, truth in a
matrix, 57

(AAL,�AL), the formula matrix, 60

AL, proof rules, 29

ALcf , cut free AL, 32

UDA |= Γ ` ∆, validity in a class
(of algebras), 32

, cf , short for AL, ALcf , 32

n, ncf , proof of length n, 38

ALcf Γ ` ∆, derivability in ALcf ,
32

AL Γ ` ∆, derivability in AL, 32

anf , ambiguous normal form for
formulas, 46

�, congruence in ambiguity
matrices, 55

≡, congruent, i.e. equivalent in all
logical contexts, 46

≡l, ≡r, congruent on the
left/right of `, 47

≤, algebraic order in ambiguity
matrices, 63

5, weaker in all logical contexts,
46

SAA, strong ambiguous algebra,
13

UDA, universal distribution
algebra, 14

WAA, weak ambiguous algebra,
14

�, list of conditions, 53
AM |= Γ ` ∆, validity in all

matrices, 57
U, σ |= Γ ` ∆, truth in an

algebra, 32
AM, class of ambiguity matrices,

54

Context function, inductive
definition, 28

Conventions for multi-sequents, 28

Invertibility Lemma for ALcf , 42

Margin Lemma for UDA, 20
Matrix interpretation, 56
Multi-context, 27
Multi-sequent, 27

Partial UDA, 24

String abbreviations for matrices,
53

Uniformity of strong ambiguous
algebras, 16
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